北京大学学报(医学版) ›› 2024, Vol. 56 ›› Issue (2): 345-351. doi: 10.19723/j.issn.1671-167X.2024.02.023

• 论著 • 上一篇    下一篇

成型方向对3D打印口腔义齿基托树脂材料物理性能及力学性能的影响

展新新,曹露露,项东,汤皓,夏丹丹*(),林红*()   

  1. 北京大学口腔医学院·口腔医院材料研究室, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 北京大学口腔医学院口腔医疗器械检验中心, 国家药品监督管理局口腔材料重点实验室, 口腔数字化医疗技术和材料国家工程实验室, 口腔数字医学北京市重点实验室, 北京 100081
  • 收稿日期:2023-09-19 出版日期:2024-04-18 发布日期:2024-04-10
  • 通讯作者: 夏丹丹,林红 E-mail:dandanxia@pku.edu.cn;hong196lin@sina.com
  • 基金资助:
    科技部"十三五"国家重点研发计划(2018YFB1106905)

Effect of printing orientation on physical and mechanical properties of 3D printing prosthodontic base resin materials

Xinxin ZHAN,Lulu CAO,Dong XIANG,Hao TANG,Dandan XIA*(),Hong LIN*()   

  1. Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials & Dental Medical Devices Testing Center & Beijing Key Laboratory of Digital Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
  • Received:2023-09-19 Online:2024-04-18 Published:2024-04-10
  • Contact: Dandan XIA,Hong LIN E-mail:dandanxia@pku.edu.cn;hong196lin@sina.com
  • Supported by:
    the National Key Research and Development Program of China(2018YFB1106905)

摘要:

目的: 分析成型方向对打印件的表面特征、弹性模量、挠曲强度及断裂韧性的影响及其与受力方向之间的关系, 为口腔义齿基托树脂材料的临床应用提供科学依据和指导。方法: 采用3D打印技术使用义齿基托树脂材料打印义齿基托树脂试样, 试样形状及尺寸参考目前常规义齿基托材料检测标准。检测物理性能的试样为圆柱体(直径15 mm、厚1 mm), 在Z轴的不同角度方向上(0°、45°、90°)进行打印。扫描电镜观察经不同方向打印后试样的表面微观形貌; 试样经色稳定仪浸水光照后观察其颜色稳定性; 利用粗糙度仪分析试样表面粗糙程度; 用维氏硬度计测量硬度。检测力学性能的试样为长方体(检测弹性模量和挠曲强度: 长64 mm、宽10 mm、高3.3 mm; 检测断裂韧性: 长39 mm、高8.0 mm、宽4.0 mm), 分为W、H两组, W组以长×宽为底面, 平行XY轴平面, 自下而上沿Z轴开始打印, H组以长×高为底面, 平行XY轴平面, 自下而上沿Z轴开始打印, 两组成型角度均分为0°、45°和90°, 通过万能力学试验机研究其弹性模量、挠曲强度和断裂韧性。采用SPSS 22.0软件对数据进行统计分析。结果: 表面形貌和粗糙度与成型方向密切相关, 0°、45°及90°试样之间差异具有统计学意义, 0°试样表面最光滑(粗糙度 < 1 μm), 45°试样表面最粗糙(粗糙度>3 μm)。0°试样硬度最佳[(196.13±0.20) MPa], 与90°试样[(186.62±4.81) MPa]比较差异具有统计学意义(P < 0.05)。试样的力学性能与打印方向也密切相关, W组45°试样的弹性模量、挠曲强度及断裂韧性与其他方向试样比较均为最高, 差异具有统计学意义。弹性模量结果显示, H组中, 45°试样弹性模量最高, 与0°和90°试样比较差异具有统计学意义(P < 0.05);W组中0°及45°试样高于90°试样(P < 0.05);且W组0°及45°试样的弹性模量均显著高于H组0°及45°试样(P < 0.05)。挠曲强度结果显示, H组各角度试样之间差异无统计学意义, W组中90°试样强度最小, 与0°及45°试样之间比较差异具有统计学意义(P < 0.05), 且W组0°及45°试样的强度均显著高于H组0°及45°试样(P < 0.05)。断裂韧性结果显示, H组各角度试样断裂韧性均低于义齿基托材料检测标准规定的1.9 MPa m1/2; W组45°试样最高, 与0°及90°试样比较差异具有统计学意义(P < 0.05), 90°试样断裂韧性低于1.9 MPa m1/2结论: 成型方向为0°的试样在物理性能上相对较优, 而45°试样具有最优的力学性能; 以长×高为底面沿Z轴不同方向打印的试样(H组)以及以长×宽为底面沿Z轴90°打印的试样(W组90°)的断裂韧性尚不满足临床要求, 提示3D打印义齿基托树脂性能受打印方向影响, 只有各个方向打印试样的各项性能均满足义齿基托材料检测标准的最低要求, 才可用于临床。

关键词: 3D打印, 义齿基托树脂, 物理性能, 力学性能

Abstract:

Objective: To analyze the influence of forming direction on the surface characteristics, elastic modulus, bending strength and fracture toughness of printed parts and the relationship between forming direction and force direction, and to provide scientific basis and guidance for the clinical application of oral denture base resin materials. Methods: The 3D printing technology was used to print denture base resin samples. The shape and size of the samples referred to the current standard for testing conventional denture base materials. The samples used for physical performance testing were cylindrical (with a diameter of 15 mm and a thickness of 1 mm) and printed at different angles along the Z axis (0°, 45°, 90°). Scanning electron microscope was used to observe the microscopic topography of the different samples. The color stability of different samples was observed by color stabilizer. The surface roughness of the samples was analyzed by using surface roughness tester. The Vickers hardness was measured to analyze the hardness of the samples. The samples used for mechanical performance testing were rectangular (elastic modulus and bending strength: A length of 64 mm, a width of 10 mm, and a height of 3.3 mm; fracture toughness: A length of 39 mm, a width of 8 mm, and a height of 4 mm), divided into two groups: W group and H group. The W group was printed from the bottom up along the Z axis with the length × width as the bottom surface parallel to the X, Y axis plane, while the H group printed from the bottom up along the Z axis with the length × height as the bottom surface parallel to the X, Y axis plane. The forming angles of both groups were equally divided into 0°, 45°, and 90°. The elastic modulus, bending strength and fracture toughness of different samples were studied through universal mechanical testing machine. SPSS 22.0 software was used for statistical analysis. Results: The microscopic topography and roughness of different samples were closely related to the printing direction, with significant differences between the 0°, 45°, and 90° specimens. The 0° specimens had the smoothest surface (roughness < 1 μm). The surface of the 45° specimen was the roughest (roughness>3 μm). The microhardness of the 0° sample was the best [(196.13±0.20) MPa], with a significant difference compared with the 90° sample [(186.62±4.81) MPa, P < 0.05]. The mechanical properties of different samples were also closely related to the printing direction. The elastic modulus, bending strength, and fracture toughness of the 45° samples in the W group were the highest compared with the other groups. The results of elastic modulus showed that in the H group, the 45° specimens had the highest elastic mo-dulus, which was significantly different from the 0° and 90° specimens (P < 0.05). The elastic modulus of 0° and 45° specimens in the W group were higher than those in 90° specimens (P < 0.05). The bending strength results showed that there was no significant difference between the specimens from dif-ferent angles in the H group. The bending strength of the 90° specimens in the W group was the smallest, and there was a significant difference between 90° and the 0° and 45° specimens (P < 0.05); And the bendind strength of the 0° and 45° specimens in the W group was significantly higher than that of the 0° and 45° specimens in the H group (P < 0.05). The fracture toughness results showed that the fracture toughness of the H group specimens was lower than 1.9 MPa m1/2, which was specified in the denture base standard. The 45° samples in the W group were the highest, with significant differences compared with the 0° and 90° samples (P < 0.05). And the 90° samples of the W group specimens were lower than 1.9 MPa m1/2. And the fracture toughness of the 45° specimen in the W group was significantly higher than that of all the specimens in the H group (P < 0.05). Conclusion: The 0° samples had relatively better physical properties. The 45° samples had the best mechanical properties. But the fracture toughness of specimens (H group and 90° samples of W group) did not yet meet clinical requirements. That indicated that the characteristics of the 3D printing denture base resin were affected by the printing direction. Only when the performance of the printed samples in all directions met the minimum requirements of the standard, they could be used in clinical practice.

Key words: 3D printing, Denture base resin, Physical properties, Mechanical properties

中图分类号: 

  • R783.1

图1

不同方向3D打印义齿基托树脂试样的流程"

图2

力学性能评估长方体试样打印方向示意图"

图3

H组及W组试样打印时树脂层层堆积示意图(条纹为层与层之间粘结示意线)"

图4

不同方向打印试样表面形貌的扫描电镜图(×500)"

图5

不同方向打印试样的色稳定性"

表1

不同方向打印试样的粗糙度和显微维氏硬度"

Items 0°(n=5) 45°(n=5) 90°(n=5)
Roughness/μm 0.74±0.04 3.39±0.06* 2.24±0.06*#
Microhardness/MPa 196.13±1.96 191.52±3.04 186.62±4.81*#

图6

不同方向打印试样的力学性能"

1 da Silva TM , Immich F , de Araujo TS , et al. Photosensitive resins used in additive manufacturing for oral application in dentistry: A scoping review from lab to clinic[J]. J Mech Behav Biomed Mater, 2023, 141 (5): 105732.
2 Gülcan O , Günaydın K , Tamer A . The state of the art of material jetting: A critical review[J]. Polymers (Basel), 2021, 13 (16): 2829.
doi: 10.3390/polym13162829
3 顾波. 增材制造技术国内外应用与发展趋势[J]. 金属加工(热加工), 2022, (3): 1- 16.
4 洪啸吟, 孟怀东, 阴金香. 立体光刻技术[J]. 感光科学与光化学, 1997, 15 (3): 85- 95.
5 Yoo SY , Kim SK , Heo SJ , et al. Dimensional accuracy of dental models for three-unit prostheses fabricated by various 3D printing technologies[J]. Materials (Basel), 2021, 14 (6): 1550.
doi: 10.3390/ma14061550
6 Nasiry-Khanlar L , Revilla-León M , Barmak AB , et al. Surface roughness and shear bond strength to composite resin of additively manufactured interim restorative material with different printing orientations[J]. J Prosthet Dent, 2023, 129 (5): 788- 795.
doi: 10.1016/j.prosdent.2021.08.010
7 Shim JS , Kim JE , Jeong SH , et al. Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations[J]. J Prosthet Dent, 2020, 124 (4): 468- 475.
doi: 10.1016/j.prosdent.2019.05.034
8 Yan X , Jiang R , Lin H , et al. Oriented face-centered cubic to hexagonal close-packed martensitic transition, grain morphology, and mechanical properties of Co-Cr alloy fabricated by selective laser melting[J]. J Prosthet Dent, 2022, 127 (2): 282- 287.
doi: 10.1016/j.prosdent.2020.07.036
9 Xiang D , Xu Y , Lin H , et al. Dental zirconia fabricated by stereolithography: Accuracy, translucency and mechanical properties in different build orientations[J]. Ceram Int, 2021, 47 (20): 28837- 28847.
doi: 10.1016/j.ceramint.2021.07.044
10 黄华莉, 左伟文, 石磊, 等. 义齿树脂基托材料颜色稳定性研究进展[J]. 口腔医学研究, 2014, 30 (3): 276- 277.
11 Mazurek-Popczyk J , Nowicki A , Arkusz K , et al. Evaluation of biofilm formation on acrylic resins used to fabricate dental temporary restorations with the use of 3D printing technology[J]. BMC Oral Health, 2022, 22 (1): 442.
doi: 10.1186/s12903-022-02488-5
12 Yacob N , Ahmad NA , Safii SH , et al. Is microbial adhesion affected by the build orientation of a 3-dimensionally printed denture base resin[J]. J Prosthet Dent, 2023, 130 (1): 131.e1- 131.e7.
doi: 10.1016/j.prosdent.2023.04.017
13 Alharbi N , Osman RB . Does build angle have an influence on surface roughness of anterior 3D-printed restorations? An in vitro study[J]. Int J Prosthodont, 2021, 34 (4): 505- 510.
doi: 10.11607/ijp.7100
14 Ligon SC , Liska R , Stampfl J , et al. Polymers for 3D printing and customized additive manufacturing[J]. Chem Rev, 2017, 117 (15): 10212- 10290.
15 Prpić V , Schauperl Z , Ćatić A , et al. Comparison of mechanical properties of 3D-printed, CAD/CAM, and conventional denture base materials[J]. J Prosthodont, 2020, 29 (6): 524- 528.
16 de Oliveira Limírio JPJ , Gomes JML , Alves Rezende MCR , et al. Mechanical properties of polymethyl methacrylate as a denture base: Conventional versus CAD-CAM resin: A systematic review and meta-analysis of in vitro studies[J]. J Prosthet Dent, 2022, 128 (6): 1221- 1229.
doi: 10.1016/j.prosdent.2021.03.018
17 Mann RS , Ruse ND . Fracture toughness of conventional, milled and 3D printed denture bases[J]. Dent Mater, 2022, 38 (9): 1443- 1451.
doi: 10.1016/j.dental.2022.06.029
18 Gungor H , Gundogdu M , Alkurt M , et al. Effect of polymerization cycles on flexural strengths and microhardness of different denture base materials[J]. Dent Mater J, 2017, 36 (2): 168- 173.
[1] 胡攀攀,李彦,刘啸,唐彦超,李梓赫,刘忠军. 自稳式人工椎体在颈椎前路手术中的应用[J]. 北京大学学报(医学版), 2024, 56(1): 161-166.
[2] 周华,王仁吉,刘忠军,刘晓光,吴奉梁,党礌,韦峰. 3D打印人工椎体在颈椎脊索瘤全脊椎切除术中的应用[J]. 北京大学学报(医学版), 2023, 55(1): 144-148.
[3] 开地尔娅·阿不都热合曼,张荣赓,钱浩楠,邹振洋,丹尼娅·叶斯涛,范田园. 个性化剂量熔融沉积成型3D打印茶碱片剂的制备和体外评价[J]. 北京大学学报(医学版), 2022, 54(6): 1202-1207.
[4] 孙玉春,郭雨晴,陈虎,邓珂慧,李伟伟. 口腔精准仿生修复技术的自主创新研发与转化[J]. 北京大学学报(医学版), 2022, 54(1): 7-12.
[5] 张达,王林川,周彦恒,刘晓默,李晶. 3D打印间接粘接托槽精度[J]. 北京大学学报(医学版), 2017, 49(4): 704-708.
[6] 郭福新,姜玉良,吉喆,彭冉,孙海涛,王俊杰. 3D打印非共面模板辅助CT引导125Ⅰ粒子植入治疗锁骨上复发转移癌的剂量学研究[J]. 北京大学学报(医学版), 2017, 49(3): 506-511.
[7] 王圣林,杨钟玮,闫明,刘忠军. 术中CT引导下寰枢椎复位、固定[J]. 北京大学学报(医学版), 2017, 49(3): 512-517.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!