北京大学学报(医学版) ›› 2025, Vol. 57 ›› Issue (1): 85-90. doi: 10.19723/j.issn.1671-167X.2025.01.013

• 论著 • 上一篇    下一篇

口腔即刻种植时动态导航系统的种植精度分析

李虹, 马斐斐*(), 翁金龙, 杜阳, 吴彬彰, 孙凤   

  1. 北京大学口腔医学院·口腔医院门诊部,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,北京 100081
  • 收稿日期:2022-10-10 出版日期:2025-02-18 发布日期:2025-01-25
  • 通讯作者: 马斐斐 E-mail:mafeifei824@126.com
  • 基金资助:
    北京大学口腔医院临床新技术新疗法项目(PKUSSNCT-22B06)

Accuracy of dynamic navigation system for immediate dental implant placement

Hong LI, Feifei MA*(), Jinlong WENG, Yang DU, Binzhang WU, Feng SUN   

  1. First Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2022-10-10 Online:2025-02-18 Published:2025-01-25
  • Contact: Feifei MA E-mail:mafeifei824@126.com
  • Supported by:
    the Program of New Clinical Techniques and Therapies of Peking University School and Hospital of Stomatology(PKUSSNCT-22B06)

RICH HTML

  

摘要:

目的: 动态导航系统在种植外科中广泛应用,种植外科手术可以根据植入时机的不同分为即刻种植和延期种植。本回顾性研究的目的是比较动态导航下即刻种植与延期种植的精度,探讨即刻种植对动态导航下种植精度的影响。方法: 收集97例病例(男性53例,女性44例),平均年龄(47.14±11.99)岁,共97枚种植体,其中51枚为延期种植,46枚为即刻种植。通过测量种植体植入三维位置与术前种植计划的偏差,对延期种植及即刻种植的精度进行定量对比评价。选择角度误差、植入点三维误差和根尖点三维误差作为主要观察指标,将植入点的水平误差、末端点的水平误差、植入点深度误差以及末端点深入误差作为次要观察指标。结果: 纳入的种植修复体的一年留存率和成功率均为100%,无机械或生物学并发症。整体植入点的三维误差为(1.146±0.458) mm,根尖点的三维误差为(1.276±0.526) mm,角度误差为3.022°±1.566°。延期种植组植入点的三维误差为(1.157±0.478) mm,根尖点的三维误差为(1.285±0.481) mm,角度误差为2.936°±1.470°;即刻种植组植入点的三维误差为(1.134±0.440) mm,根尖点的三维误差为(1.265±0.780) mm,角度误差为3.117°±1.677°,两组间差异均无统计学意义(P值分别为0.809、0.850、0.575)。结论: 动态导航下即刻种植的精度与延期种植相似,可以满足临床要求。

关键词: 动态导航系统, 牙种植, 即刻种植, 精度

Abstract:

Objective: Dynamic navigation approaches are widely employed in the context of implant placement surgery. Implant surgery can be divided into immediate and delayed surgery according to the time of implantation. This retrospective study was developed to compare the accuracy of dynamic navigation system for immediate and delayed implantations. Methods: In the study, medical records from all patients that had undergone implant surgery between August 2019 and June 2021 in the First Clinical Division of the Peking University School and Hospital of Stomatology were retrospectively reviewed. There were 97 patients [53 males and 44 females, average age (47.14±11.99) years] and 97 implants (delayed group: 51; immediate group: 46) that met with study inclusion criteria and were included. Implant placement accuracy was measured by the superposition of the planned implant position in the preoperative cone beam computed tomography (CBCT) image and the actual implant position in the postoperative CBCT image. The 3-dimensional (3D) entry deviation (3D deviation in the coronal aspect of the alveolar ridge), 3D apex deviation (3D deviation in the apical area of the implant) and angular deviation were analyzed as the main observation index when comparing these two groups. The 2-dimensional (2D) horizontal deviation of the entry point and apex point, and the deviation of entry point depth and apex point depth were the secondary observation index. Results: The overall implant restoration survival rate was 100%, and no mechanical or biological complications were reported. The implantation success rate was 100%. The 3D entry deviation, 3D apex deviation and angular deviation of all analyzed implants were (1.146±0.458) mm, (1.276±0.526) mm, 3.022°±1.566°, respectively; while in the delayed group these respective values were (1.157±0.478) mm, (1.285±0.481) mm and 2.936°±1.470° as compared with (1.134±0.440) mm, (1.265±0.780) mm, 3.117°±1.677° in the immediate group. No significant differences (P=0.809, P=0.850, P=0.575) in accuracy were observed when comparing these two groups. Conclusion: Dynamic computer-assisted implant surgery system promotes accurate implantation, and both the immediate and delayed implantations exhibit similar levels of accuracy under dynamic navigation system that meets the clinical demands. Dynamic navigation system is feasible for immediate implantation.

Key words: Dynamic navigation system, Dental implantation, Immediate implantation, Accuracy

中图分类号: 

  • R783.6

图1

病例纳入流程"

图2

动态导航系统示意图"

图3

动态导航系统下种植手术过程"

图4

种植体植入偏差指标的测量方法"

表1

纳入病例的人群特征及临床情况"

ItemsDelayed groupImmediate groupP value
Age/years, ±s44.92± 12.1949.61±11.390.087
Gender, male/female37/1416/30
Total number of implants5146
Implant position
  Maxillary
    Middle incisor1122
    Lateral incisor107
    Canine38
  Mandible
    Middle incisor102
    Lateral incisor166
    Canine11

表2

种植牙位的分布情况"

GroupTooth position
1112132122233132334142
Delayed group47273169147
Immediate group132495404122

表3

种植体型号"

GroupImplants
3.5 mm× 10.0 mm3.5 mm× 11.5 mm3.5 mm× 13.0 mm3.5 mm× 15.0 mm3.5 mm× 18.0 mm4.3 mm× 10.0 mm4.3 mm× 11.5 mm4.3 mm× 13.0 mmTotal
Delayed group214247031051
Immediate group0121413410246
Total2263820441297

表4

动态导航下延期种植组与即刻种植组的种植体植入误差"

ItemsAll enrolled, ${\bar x}$±sDelayed group, ${\bar x}$±sImmediate group, ${\bar x}$±stP value
Numbers975146
Entry deviation/mm1.146±0.4581.157±0.4781.134±0.4400.2430.809
Apex deviation/mm1.276±0.5261.285±0.4811.265±0.7800.1890.850
Angular deviation/(°)3.022±1.5662.936±1.4703.117±1.677-0.5620.575
EH/mm0.820±0.4620.860±0.4570.777±0.4690.8750.384
AH/mm0.990±0.5241.015±0.5010.964±0.5530.4730.637
ED/mm0.511±0.6120.596±0.4620.416±0.7381.4550.149
AD/mm0.508±0.6050.583±0.4590.425±0.7301.2820.203

表5

延期种植组与即刻种植组植入点和根尖点近远中及颊舌向偏斜分布情况"

ItemsDBMBDLML
Entry deviation
  Delayed group201777
  Immediate group151696
Apex deviation
  Delayed group11161014
  Immediate group10141012
1 Wei SM , Li Y , Deng K , et al. Does machine-vision-assisted dynamic navigation improve the accuracy of digitally planned prosthetically guided immediate implant placement? A randomized controlled trial[J]. Clin Oral Implants Res, 2022, 33 (8): 804- 815.
doi: 10.1111/clr.13961
2 Aydemir CA , Arisan V . Accuracy of dental implant placement via dynamic navigation or the freehand method: A split-mouth rando-mized controlled clinical trial[J]. Clin Oral Implants Res, 2020, 31 (3): 255- 263.
doi: 10.1111/clr.13563
3 Geng N , Ren J , Zhou T , et al. Clinical study of dynamic real-time navigation assisted immediate implant without flapping in the esthetic zone[J]. J Stomatol Oral Maxillofac Surg, 2023, 124 (Suppl 1): 101278.
4 Pozzi A , Arcuri L , Kan J , et al. Navigation guided socket-shield technique for implant and pontic sites in the esthetic zone: A proof-of-concept 1-year prospective study with immediate implant placement and loading[J]. J Esthet Restor Dent, 2022, 34 (1): 203- 214.
doi: 10.1111/jerd.12867
5 Pozzi A , Arcuri L , Carosi P , et al. Clinical and radiological outcomes of novel digital workflow and dynamic navigation for single-implant immediate loading in aesthetic zone: 1-year prospective case series[J]. Clin Oral Implants Res, 2021, 32 (12): 1397- 1410.
doi: 10.1111/clr.13839
6 Emery RW , Merritt SA , Lank K , et al. Accuracy of dynamic navigation for dental implant placement-model-based evaluation[J]. J Oral Implantol, 2016, 42 (5): 399- 405.
doi: 10.1563/aaid-joi-D-16-00025
7 Mischkowski RA , Zinser MJ , Neugebauer J , et al. Comparison of static and dynamic computer-assisted guidance methods in implantology[J]. Int J Comput Dent, 2006, 9 (1): 23- 35.
8 Golob DJ , Bencharit S , Carrico CK , et al. Exploring training dental implant placement using computer-guided implant navigation system for predoctoral students: A pilot study[J]. Eur J Dent Educ, 2019, 23 (4): 415- 423.
doi: 10.1111/eje.12447
9 Wei SM , Shi JY , Qiao SC , et al. Accuracy and primary stability of tapered or straight implants placed into fresh extraction socket using dynamic navigation: A randomized controlled clinical trial[J]. Clin Oral Investig, 2022, 26 (3): 2733- 2741.
doi: 10.1007/s00784-021-04247-2
10 苏恩典, 陈莹晖, 杨松, 等. 即刻与延期种植导航手术的术者操作误差分析[J]. 临床口腔医学杂志, 2020, 36 (11): 673- 676.
11 Zhan Y , Wang M , Cheng X , et al. Evaluation of a dynamic navigation system for training students in dental implant placement[J]. J Dent Educ, 2021, 85 (2): 120- 127.
doi: 10.1002/jdd.12399
[1] 徐昕恺, 赵建江, 田素坤, 刘中宁, 赵晓一, 赵晓波, 江腾飞, 陈晓军, 马超, 孙玉春. 集成压缩气流系统扫描头辅助获取液体干扰表面三维数据精度评价[J]. 北京大学学报(医学版), 2025, 57(1): 121-127.
[2] 王鹃, 邱立新, 尉华杰. 下颌磨牙穿龈形态设计对种植体周围软组织影响的随机对照临床研究[J]. 北京大学学报(医学版), 2025, 57(1): 65-72.
[3] 王聪伟,高敏,于尧,章文博,彭歆. 游离腓骨瓣修复下颌骨缺损术后义齿修复的临床分析[J]. 北京大学学报(医学版), 2024, 56(1): 66-73.
[4] 李穗,马雯洁,王时敏,丁茜,孙瑶,张磊. 上前牙种植单冠修复体切导的数字化设计正确度[J]. 北京大学学报(医学版), 2024, 56(1): 81-87.
[5] 刘晓强,周寅. 牙种植同期植骨术围术期高血压的相关危险因素[J]. 北京大学学报(医学版), 2024, 56(1): 93-98.
[6] 丁茜,李文锦,孙丰博,谷景华,林元华,张磊. 表面处理对氧化钇和氧化镁稳定的氧化锆种植体晶相及断裂强度的影响[J]. 北京大学学报(医学版), 2023, 55(4): 721-728.
[7] 欧蒙恩,丁云,唐卫峰,周永胜. 基台边缘-牙冠的平台转移结构中粘接剂流动的三维有限元分析[J]. 北京大学学报(医学版), 2023, 55(3): 548-552.
[8] 孙菲,刘建,李思琪,危伊萍,胡文杰,王翠. 种植体黏膜下微生物在健康种植体和种植体周炎中的构成与差异:一项横断面研究[J]. 北京大学学报(医学版), 2023, 55(1): 30-37.
[9] 王鹃,尉华杰,孙井德,邱立新. 预成刚性连接杆用于无牙颌种植即刻印模制取的应用评价[J]. 北京大学学报(医学版), 2022, 54(1): 187-192.
[10] 梁峰,吴敏节,邹立东. 后牙区单牙种植修复5年后的临床修复疗效观察[J]. 北京大学学报(医学版), 2021, 53(5): 970-976.
[11] 刘晓强,杨洋,周建锋,刘建彰,谭建国. 640例单牙种植术对血压和心率影响的队列研究[J]. 北京大学学报(医学版), 2021, 53(2): 390-395.
[12] 周培茹, 蒋析, 华红. 口腔黏膜病患者口腔种植的时机及注意事项[J]. 北京大学学报(医学版), 2021, 53(1): 5-8.
[13] 国丹妮,潘韶霞,衡墨笛,屈健,魏秀霞,周永胜. 应用于无牙颌种植修复设计的三维面部扫描配准方法的对比[J]. 北京大学学报(医学版), 2021, 53(1): 83-87.
[14] 李蓬,朴牧子,胡洪成,王勇,赵一姣,申晓婧. 经嵴顶上颌窦底提升术后不植骨同期种植的影像研究[J]. 北京大学学报(医学版), 2021, 53(1): 95-101.
[15] 徐迪,魏冬豪,张亚池,邸萍,林野. 以苄索氯胺和异丙醇为主要有效成分的消毒剂对牙科印模精度的影响[J]. 北京大学学报(医学版), 2020, 52(6): 1112-1116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!