北京大学学报(医学版) ›› 2026, Vol. 58 ›› Issue (1): 50-59. doi: 10.19723/j.issn.1671-167X.2026.01.007

• 论著 • 上一篇    下一篇

1例成年猛性龋患者龈上菌斑中小韦荣球菌的分离及代谢特性

何梓玉1, 张辉1, 陈智滨2, 邢海霞1,*(), 潘洁1,*()   

  1. 1. 北京大学口腔医学院·口腔医院综合治疗科, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 北京 100081
    2. 北京大学口腔医学院·口腔医院牙周科, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 北京 100081
  • 收稿日期:2025-10-10 出版日期:2026-02-18 发布日期:2025-12-02
  • 通讯作者: 邢海霞, 潘洁
  • 基金资助:
    国家自然科学基金(51801003)

Isolation, identification, and metabolic characterization of a Veillonella parvula isolated from supragingival plaque in a patient with rampant caries

Ziyu HE1, Hui ZHANG1, Zhibin CHEN2, Haixia XING1,*(), Jie PAN1,*()   

  1. 1. Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
    2. Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
  • Received:2025-10-10 Online:2026-02-18 Published:2025-12-02
  • Contact: Haixia XING, Jie PAN
  • Supported by:
    the National Natural Science Foundation of China(51801003)

RICH HTML

  

摘要:

目的: 从成年猛性龋患者健康牙面的龈上菌斑中分离并培养野生株小韦荣球菌(Veillonella parvula, V. parvula), 研究其生长及代谢特性, 初步探究其与变异链球菌(Streptococcus mutans, S. mutans)的相互作用。方法: 利用韦荣氏球菌琼脂培养基, 从成年猛性龋患者健康牙面的龈上菌斑中分离并纯化野生株V. parvula, 进行形态、生化和16S rRNA基因鉴定。取标准株V. parvula作为对照组, 用添加120 mmol/L乳酸的脑心浸出液肉汤(brain heart infusion broth, BHI) 培养基在厌氧箱内分别培养野生株V. parvula和标准株V. parvula, 检测24 h内野生株V. parvula和标准株V. parvula生长状况及乳酸代谢能力。将野生株V. parvula和标准株V. parvula分别与S. mutans进行共培养, 检测培养基内乳酸浓度及pH值, 用扫描电镜观察细菌生物膜的结构, 结晶紫染色后对细菌生物膜形成量进行半定量分析, 初步探索两者之间的互相作用关系。结果: 经生化鉴定及16S rRNA基因鉴定, 从成年猛性龋患者健康牙面的龈上菌斑中分离出1株野生株V. parvula。24 h内对野生株V. parvula及标准株V. parvula进行培养, 两者生长曲线与培养基内剩余乳酸浓度随时间变化趋势不同, 二者之间的差异有统计学意义(F=10.431, P<0.001;F=5.641, P<0.05);将野生株V. parvula和标准株V. parvula分别与S. mutans共培养, 12 h时野生株V. parvulaS. mutans共培养组形成的细菌生物膜结构比标准株V. parvulaS. mutans共培养组更为致密、生物膜量更多(P < 0.001)。24 h时野生株V. parvulaS. mutans共培养组产生的乳酸累积浓度高达65 mmol/L, 显著高于标准株V. parvulaS. mutans共培养组和S. mutans单培养组(P < 0.001)。结论: 利用韦荣氏球菌琼脂培养基能够成功从成年猛性龋患者健康牙面的龈上菌斑中分离野生株V. parvula, 其生长能力、乳酸代谢能力及促进S. mutans形成生物膜和产酸能力均高于标准株V. parvula, 能够加速早期龋的形成。

关键词: 龋病, 猛性龋, 小韦荣球菌, 变异链球菌, 龈上菌斑

Abstract:

Objective: To isolate and cultivate Veillonella parvula (V. parvula) from the supragingival plaque of adult patients intact teeth surfaces with rampant caries, to investigate its growth and metabolic properties, and to preliminarily explore its interaction with Streptococcus mutans (S. mutans). Methods: V. parvula was isolated from the supragingival plaque of intact teeth surfaces in an adult patient with rampant caries using Veillonella agar medium. Identification was performed based on colony morphology, biochemical tests, and 16S rRNA gene sequencing. The clinically isolated strain was cultured in brain heart infusion broth (BHI) supplemented with 120 mmol/L lactate in an anaerobic chamber. Its growth curve and lactate metabolism over 24 h were assessed. Co-culture with S. mutans was conducted to measure lactate accumulation and pH value changes in the culture system. Biofilm structure was observed by scanning electron microscopy (SEM), and the biofilm biomass was compared using crystal violet staining, providing initial insights into their interaction. Results: Through biochemical identification and 16S rRNA gene sequencing, one wild type strain of V. parvula was isolated from the supragingival plaque of intact teeth surfaces in an adult patient with rampant caries. When the wild type V. parvula and the reference strain V. parvula were cultured over 24 h, their growth curves and the trends in the residual lactate concentration in the medium differed, with the differences being statistically significant (F=10.431, P < 0.001; F=5.641, P < 0.05). In co-culture with S. mutans, the group with the wild type V. parvula formed a denser bacterial biofilm structure and had a greater biofilm biomass at 12 h compared with the group with the reference strain V. parvula (P < 0.001). At 24 h, the cumulative lactate concentration produced by the co-culture group with the wild type V. parvula reached as high as 65 mmol/L, which was significantly higher than that in the co-culture group with the reference strain V. parvula and the S. mutans mono-culture group (P < 0.001). Conclusion: The strain of V. parvula which we isolated from supragingival dental plaque exhibited superior growth, lactate metabolism, and a greater capacity to promote S. mutans biofilm formation than the reference strain, ultimately accelerating the initiation of early carious lesions.

Key words: Dental caries, Rampant caries, Veillonella parvula, Streptococcus mutans, Supragingival plaque

中图分类号: 

  • R781.4

图1

临床分离株的菌落形态"

图2

临床分离株的系统发育树"

图3

野生株V. parvula与标准株V. parvula的生长曲线及培养基内乳酸浓度"

图4

扫描电镜下观察生物膜形态结构"

图5

光学显微镜下观察结晶紫染色结果(× 1 000)"

图6

结晶紫染色的半定量分析细菌生物膜量"

图7

V. parvula与S. mutans共培养组中乳酸积累量及pH值的变化"

1
Emmanuelli B , Knorst JK , Menegazzo GR , et al. Dental caries prediction and the indication of pit and fissure sealant in children first permanent molars: A prospective study[J]. J Dent, 2023, 135, 104557.

doi: 10.1016/j.jdent.2023.104557
2
Ganhewa M , Murthy V , Rajappa R , et al. Rampant caries: What it is and what it isn't[J]. Spec Care Dentist, 2024, 44 (4): 1300- 1302.

doi: 10.1111/scd.12986
3
Tang Y , Nie H , Zhang Y , et al. Effects of Sj gren's syndrome and high sugar diet on oral microbiome in patients with rampant caries: A clinical study[J]. BMC Oral Health, 2024, 24 (1): 361.

doi: 10.1186/s12903-024-04150-8
4
Xie Y , Fan Y , Su M , et al. Characteristics of the oral microbiota in patients with primary Sj gren's syndrome[J]. Clin Rheumatol, 2024, 43 (6): 1939- 1947.

doi: 10.1007/s10067-024-06958-9
5
Marsh PD . Microbial ecology of dental plaque and its significance in health and disease[J]. Adv Dent Res, 1994, 8 (2): 263- 271.

doi: 10.1177/08959374940080022001
6
Xiao C , Ran S , Huang Z , et al. Bacterial diversity and community structure of supragingival plaques in adults with dental health or caries revealed by 16S pyrosequencing[J]. Front Microbiol, 2016, 7, 1145.
7
Li K , Wang J , Du N , et al. Salivary microbiome and metabolome analysis of severe early childhood caries[J]. BMC Oral Health, 2023, 23 (1): 30.

doi: 10.1186/s12903-023-02722-8
8
Zhou Z , Ling G , Ding N , et al. Molecular analysis of oral microflora in patients with primary Sj gren's syndrome by using high-throughput sequencing[J]. PeerJ, 2018, 6, e5649.

doi: 10.7717/peerj.5649
9
Xing H , Liu H , Pan J . High-throughput sequencing of oral microbiota in Candida carriage Sj gren's syndrome patients: A pilot cross-sectional study[J]. J Clin Med, 2023, 12 (4): 1559.

doi: 10.3390/jcm12041559
10
Singh M , Teles F , Uzel NG , et al. Characterizing microbiota from Sj gren's syndrome patients[J]. JDR Clin Trans Res, 2021, 6 (3): 324- 332.
11
Wei Y , Zhang Y , Zhuang Y , et al. Veillonella parvula acts as a pathobiont promoting the biofilm virulence and cariogenicity of Streptococcus mutans in adult severe caries[J]. Microbiol Spectr, 2024, 12 (11): e0431823.

doi: 10.1128/spectrum.04318-23
12
Ng SK , Hamilton IR . Lactate metabolism by Veillonella parvula[J]. J Bacteriol, 1971, 105 (3): 999- 1005.

doi: 10.1128/jb.105.3.999-1005.1971
13
Mikx FH , van der Hoeven JS . Symbiosis of Streptococcus mutans and Veillonella alcalescens in mixed continuous cultures[J]. Arch Oral Biol, 1975, 20 (7): 407- 410.

doi: 10.1016/0003-9969(75)90224-1
14
Zhou P , Manoil D , Belibasakis GN , et al. Veillonellae: Beyond bridging species in oral biofilm ecology[J]. Front Oral Health, 2021, 2, 774115.

doi: 10.3389/froh.2021.774115
15
Moussa HA , Wasfi R , Abdeltawab NF , et al. High counts and anthracene degradation ability of Streptococcus mutans and Veillonella parvula isolated from the oral cavity of cigarette smokers and non-smokers[J]. Front Microbiol, 2021, 12, 661509.

doi: 10.3389/fmicb.2021.661509
16
Mashima I , Nakazawa F . The influence of oral Veillonella species on biofilms formed by Streptococcus species[J]. Anaerobe, 2014, 28, 54- 61.

doi: 10.1016/j.anaerobe.2014.05.003
17
Liu S , Chen M , Wang Y , et al. Effect of Veillonella parvula on the physiological activity of Streptococcus mutans[J]. Arch Oral Biol, 2020, 109, 104578.

doi: 10.1016/j.archoralbio.2019.104578
18
Li G , Liu Y , Zhang M , et al. Veillonella parvula promotes root caries development through interactions with Streptococcus mutans and Candida albicans[J]. Microb Biotechnol, 2024, 17 (8): e14547.

doi: 10.1111/1751-7915.14547
19
Chalmers NI , Palmer RJ Jr. , Cisar JO , et al. Characterization of a Streptococcus sp.-Veillonella sp. community micromanipulated from dental plaque[J]. J Bacteriol, 2008, 190 (24): 8145- 8154.

doi: 10.1128/JB.00983-08
20
Yang Z , Wang J , Chen Y , et al. Veillonella intestinal colonization promotes C. difficile infection in Crohn's disease[J]. Cell Host Microbe, 2025, 33 (9): 1518- 1534. e10.

doi: 10.1016/j.chom.2025.07.019
21
Lu H , Zou P , Zhang Y , et al. The sampling strategy of oral microbiome[J]. iMeta, 2022, 1 (2): e23.

doi: 10.1002/imt2.23
22
Momeni SS , Beno SM , Baker JL , et al. Caries-associated biosynthetic gene clusters in Streptococcus mutans[J]. J Dent Res, 2020, 99 (8): 969- 976.

doi: 10.1177/0022034520914519
23
Díaz-Garrido N , Lozano CP , Kreth J , et al. Competition and caries on enamel of a dual-species biofilm model with Streptococcus mutans and Streptococcus sanguinis[J]. Appl Environ Microbiol, 2020, 86 (21): e0126220.

doi: 10.1128/AEM.01262-20
24
van der Hoeven JS , Toorop AI , Mikx RH . Symbiotic relationship of Veillonella alcalescens and Streptococcus mutans in dental plaque in gnotobiotic rats[J]. Caries Res, 1978, 12 (3): 142- 147.

doi: 10.1159/000260324
25
Abram AM , Szewczyk MM , Park SG , et al. A co-association of Streptococcus mutans and Veillonella parvula/dispar in root caries patients and in vitro biofilms[J]. Infect Immun, 2022, 90 (10): e0035522.

doi: 10.1128/iai.00355-22
26
Scarampi A , Lawrence JM , Bombelli P , et al. Polyploid cyanobacterial genomes provide a reservoir of mutations, allowing rapid evolution of herbicide resistance[J]. Curr Biol, 2025, 35 (7): 1549- 1561.

doi: 10.1016/j.cub.2025.02.044
27
Kara D , Luppens SBI , van Marle J , et al. Microstructural differences between single-species and dual-species biofilms of Streptococcus mutans and Veillonella parvula, before and after exposure to chlorhexidine[J]. FEMS Microbiol Lett, 2007, 271 (1): 90- 97.

doi: 10.1111/j.1574-6968.2007.00701.x
28
Zhang Y , Liu X , Gao Q , et al. Copper ions inhibit Streptococcus mutans-Veillonella parvula dual biofilm by activating Streptococcus mutans reactive nitrogen species[J]. BMC Oral Health, 2023, 23 (1): 48.

doi: 10.1186/s12903-023-02738-0
29
Koo H , Falsetta ML , Klein MI . The exopolysaccharide matrix: A virulence determinant of cariogenic biofilm[J]. J Dent Res, 2013, 92 (12): 1065- 1073.

doi: 10.1177/0022034513504218
[1] 陈心心, 唐哲, 乔艳春, 荣文笙. 北京市密云区4岁儿童患龋状况及其与龋活跃性检测的相关性[J]. 北京大学学报(医学版), 2024, 56(5): 833-838.
[2] 邢海霞,王琳,乔迪,刘畅,潘洁. 干燥综合征口腔疾病的治疗特点[J]. 北京大学学报(医学版), 2023, 55(5): 929-933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!