北京大学学报(医学版) ›› 2019, Vol. 51 ›› Issue (5): 881-886. doi: 10.19723/j.issn.1671-167X.2019.05.015

• 论著 • 上一篇    下一篇

应用CorVis ST对圆锥角膜及亚临床期圆锥角膜生物力学特性的研究及判别标准分析

吴元1,李晓丽2,杨松霖1,晏晓明1,李海丽1,()   

  1. 1. 北京大学第一医院眼科, 北京 100034
    2. 天津市眼科医院眼科, 天津 300020
  • 收稿日期:2017-09-06 出版日期:2019-10-18 发布日期:2019-10-24
  • 通讯作者: 李海丽 E-mail:lihaili2013@sina.cn
  • 基金资助:
    国家自然科学基金(11372011)

Examination and discriminant analysis of corneal biomechanics with CorVis ST in keratoconus and subclinical keratoconus

Yuan WU1,Xiao-li LI2,Song-lin YANG1,Xiao-ming YAN1,Hai-li LI1,()   

  1. 1. Department of Ophthalmology, Peking University First Hospital, Beijing 100034, China
    2. Department of Ophthalmology, Tianjin Eye Hospital, Tianjin 300020, China
  • Received:2017-09-06 Online:2019-10-18 Published:2019-10-24
  • Contact: Hai-li LI E-mail:lihaili2013@sina.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(11372011)

RICH HTML

  

摘要:

目的:应用可视化角膜生物力学分析仪(comeal visualization Scheimpflug technology, CorVis ST)对圆锥角膜、亚临床期圆锥角膜及正常角膜的生物力学参数进行检测,比较三者的参数差异,探讨生物力学参数对圆锥角膜和亚临床期圆锥角膜的判别价值。方法:收集2015年10—12月在北京大学第一医院眼科就诊的圆锥角膜患者17例(24只眼)、亚临床期圆锥角膜患者12例(12只眼), 同时选取正常志愿者40例(40只眼)。用CorVis ST对三组患者角膜力学特性进行分析,比较三组患者的角膜生物力学参数差异,对各个参数对疾病的区分度进行评价。以力学参数、眼内压、角膜中央厚度为指标,建立判别分析函数,并评价角膜力学参数对判别函数的贡献。结果:圆锥角膜、亚临床期圆锥角膜和正常角膜的生物力学性能依次递增,除第二压平时间、最大压陷时间和第一次压平速度外,其他指标反映出的差异均有统计学意义(P<0.05);最大压陷时角膜曲率半径和角膜中央厚度可以反映出三组角膜之间的两两差异,较好地体现出圆锥角膜不同病程的力学状态。建立典则判别函数,可反映三组角膜的差别,回判准确率约85%, 其中,对判别函数贡献较大的力学参数指标为角膜中央厚度、最大压陷时角膜曲率半径、最大压陷深度和第二次压平速度。结论:与正常角膜相比较,亚临床期圆锥角膜和圆锥角膜的生物力学性能依次下降。基于CorVis ST的力学参数指标可以区分出圆锥角膜、亚临床期圆锥角膜和正常角膜。

关键词: 圆锥角膜, 生物力学, 判别分析

Abstract:

Objective: To compare the corneal biomechanical properties among keratoconus, subclinical keratoconus and normal corneas by using CorVis ST, and to estimate the effect of these biomechanical indices in discriminating keratoconus and subclinical keratoconus from normal. Methods: A total of 76 eyes of 67 subjects were enrolled and divided into three groups. Keratoconus group included 24 eyes from 17 patients, subclinical keratoconus group included 12 eyes from 12 patients and normal group included 40 normal eyes from 40 subjects.All the eyes were assessed with CorVis ST and ten biomechanical para-meters, intraocular pressure (IOP) and central corneal thickness (CCT) were obtained from this machine. The discrimination of biomechanical characteristic of the three groups based on the all indices was reflected by discriminant analysis and the Fisher discriminant function was established. Results: The values of corneal biomechanics of keratoconus, subclinical keratoconus, normal eyes were increased in sequence, except for three indices: the second applamation time (A2T), time taken to reach highest concavity (HCT) and maximum corneal velocity during the first applanation (Vin). Three sets of data were among a statistically significant difference (P<0.05). There were statistically significant differences (P<0.05) between any two groups by comparing with such two indices: radius value of central concave curvature at highest concavity (HCR) and CCT. The grades of the three groups were obvious, evaluated by the discriminant function. The accuracy of reevaluation was 85% by validation method. The biggest contribution of indices in discriminant function was given by such four indices in sequence: CCT, HCR, maximum deformation amplitude of highest concavity (HCDA) and maximum corneal velocity during the second applanation (Vout). Conclusion: The corneal biomechanical properties of keratoconus and subclinical keratoconus were decreased compared with normal eyes. The biomechanical parameters based on CorVis ST showed a good performance for discriminating among keratoconus, subclinical keratoconus and normal corneas.

Key words: Keratoconus, Biomechanics, Discrimination analysis

中图分类号: 

  • R772.2

图1

角膜形变过程"

图2

CorVis ST软件控制界面及各个参数"

表1

三组角膜生物力学参数比较"

Parameters Keratoconus (n=24) Subclinical keratoconus (n=12) Control (n=40) Statistics P
A1T/ms, x?±s 6.95±0.22 7.15±0.27 7.37±0.38 F=5.816 <0.001
A2T/ms, M (P25, P75) 21.98 (16.89, 22.82) 21.62 (16.67, 22.53) 21.81 (16.42, 22.64) χ2=4.687 0.176
HCT/ms, M (P25, P75) 16.85 (15.29, 22.33) 16.59 (13.78, 17.69) 16.89 (14.84, 22.94) χ2=3.155 0.061
A1L/mm, M (P25, P75) 1.65 (1.13, 1.79) 1.76 (1.33, 1.86) 1.77 (1.28, 1.89) χ2=24.587 <0.001
Vin/(m/s), M (P25, P75) 0.16 (0.14, 0.23) 0.16 (0.13, 0.17) 0.15 (0.07, 0.19) χ2=3.061 0.019
A2L/mm, x?±s 1.21±0.34 1.57±0.35 1.64±0.31 F=-3.888 0.040
Vout/(m/s), x?±s 0.53±0.19 0.34±0.08 0.35±0.09 F=4.326 <0.001
PD/mm, M (P25, P75) 4.95 (2.46, 6.31) 4.84 (2.46, 5.36) 4.52 (1.92, 6.27) χ2=10.050 <0.001
HCR/mm, x?±s 4.37±1.17 5.64±1.89 6.75±1.36 F=7.136 <0.001*
HCDA/mm, x?±s 1.33±0.16 1.12±0.09 1.08±0.14 F=-6.501 <0.001
IOP/mmHg, x?±s 9.43±2.16 11.63±3.03 13.8±4.02 F=5.572 <0.001
CCT/μm, x?±s 446.2±56.3 496.3±35.37 534.3±36.3 F=6.855 <0.001*

图3

所有角膜的力学参数在2个判别函数中的得分图"

表2

回判分析结果"

Verification method Groups Keratoconus, n(%) Subclinical
keratoconus, n(%)
Control, n(%) Total Correct
judgement
Auto-verification Keratoconus 18 (75) 6 (25) 0 24 75.0%
Subclinical keratoconus 0 11 (91.7) 1 (8.3) 12 91.7%
Control 2 (5) 2 (5) 36 (90) 40 90.0%
Cross-vertification Keratoconus 16 (66.7) 6 (25) 2 (8.3) 24 66.7%
Subclinical keratoconus 3 (25) 6 (50) 3 (25) 12 50.0%
Control 3 (7.5) 4 (10) 33 (82.5) 40 82.5%
[1] Gomes JA, Tan D, Rapuano CJ , et al. Global consensus on keratoconus and ectatic diseases[J]. Cornea, 2015,34(4):359-369.
[2] Edmund C . Corneal elasticity and ocular rigidity in normal and keratoconic eyes[J]. Acta Ophthalmol (Copenh), 1988,66(2):134-140.
[3] Labiris G, Giarmoukakis A, Gatzioufas Z , et al. Diagnostic capacity of the keratoconus match index and keratoconus match pro-bability in subclinical keratoconus[J]. J Cataract Refract Surg, 2014,40(6):999-1005.
[4] Maguire LJ, Lowry JC . Identifying progression of subclinical keratoconus by serial topography analysis[J]. Am J Ophthalmol, 1991,112(1):41-45.
[5] Rabinowitz YS . Keratoconus[J]. Surv Ophthalmol, 1998,42(4):297-319.
[6] Tummanapalli SS, Potluri H, Vaddavalli PK , et al. Efficacy of axial and tangential corneal topography maps in detecting subclinical keratoconus[J]. J Cataract Refract Surg, 2015,41(10):2205-2214.
[7] Hon Y, Lam AK . Corneal deformation measurement using Scheimpflug noncontact tonometry[J]. Optom Vis Sci, 2013,90(1):e1-e8.
[8] Savini G, Barboni P, Carbonelli M , et al. Repeatability of automatic measurements by a new Scheimpflug camera combined with Placido topography[J]. J Cataract Refract Surg, 2011,37(10):1809-1816.
[9] Holland DR, Maeda N, Hannush SB , et al. Unilateral keratoconus. Incidence and quantitative topographic analysis[J]. Ophthalmology, 1997,104(9):1409-1413.
[10] Lee LR, Hirst LW, Readshaw G . Clinical detection of unilateral keratoconus[J]. Aust N Z J Ophthalmol, 1995,23(2):129-133.
[11] Li X, Rabinowitz YS, Rasheed K , et al. Longitudinal study of the normal eyes in unilateral keratoconus patients[J]. Ophthalmology, 2004,111(3):440-446.
[12] Saad A, Gatinel D . Subclinical keratoconus: the need for an objective classification system[J]. Ophthalmology, 2013,120(8):e56-e57.
[13] Shirayama-Suzuki M, Amano S, Honda N , et al. Longitudinal analysis of corneal topography in suspected keratoconus[J]. Br J Ophthalmol, 2009,93(6):815-819.
[14] Saad A, Gatinel D . Topographic and tomographic properties of forme fruste keratoconus corneas[J]. Invest Ophthalmol Vis Sci, 2010,51(11):5546-5555.
[15] Baum J . On the location of the cone and the etiology of keratoconus[J]. Cornea, 1995,14(2):142-143.
[16] Hassan Z, Modis L Jr, Szalai E , et al. Examination of ocular biomechanics with a new Scheimpflug technology after corneal refractive surgery[J]. Cont Lens Anterior Eye, 2014,37(5):337-341.
[17] Bak-Nielsen S, Pedersen IB, Ivarsen A , et al. Dynamic Scheimpflug-based assessment of keratoconus and the effects of corneal cross-linking[J]. J Refract Surg, 2014,30(6):408-414.
[18] Nemeth G, Hassan Z, Csutak A , et al. Repeatability of ocular biomechanical data measurements with a Scheimpflug-based noncontact device on normal corneas[J]. J Refract Surg, 2013,29(8):558-563.
[19] Steinberg J, Katz T, Lucke K , et al. Screening for keratoconus with new dynamic biomechanical in vivo Scheimpflug analyses[J]. Cornea, 2015,34(11):1404-1412.
[1] 任爽, 时会娟, 梁子轩, 张思, 胡晓青, 黄红拾, 敖英芳. 前交叉韧带重建术后侧切动作的生物力学特征[J]. 北京大学学报(医学版), 2024, 56(5): 868-873.
[2] 赵菡,卫彦,张学慧,杨小平,蔡晴,宁成云,徐明明,刘雯雯,黄颖,何颖,郭亚茹,江圣杰,白云洋,吴宇佳,郭雨思,郑晓娜,李文静,邓旭亮. 口腔硬组织修复材料仿生设计制备和临床转化[J]. 北京大学学报(医学版), 2024, 56(1): 4-8.
[3] 吴超,王振宇,林国中,于涛,刘彬,司雨,张一博,李元超. 单侧半椎板及不同程度小关节切除术对羊颈椎生物力学的影响[J]. 北京大学学报(医学版), 2019, 51(4): 728-732.
[4] 张家豪,任爽,邵嘉艺,牛星跃,胡晓青,敖英芳. 前交叉韧带生物力学止点重建的解剖学与有限元分析[J]. 北京大学学报(医学版), 2019, 51(3): 586-590.
[5] 荣艳波,田光磊,陈山林. 深层桡尺远侧韧带对桡尺远侧关节稳定作用的生物力学研究[J]. 北京大学学报(医学版), 2017, 49(3): 518-521.
[6] 刘海鹰,王捷夫,朱震奇. 融合与Topping-off术对腰椎影响的有限元分析[J]. 北京大学学报(医学版), 2013, 45(5): 723-727.
[7] 郭阳,田光磊,姜保国,陈山林,韩娜. 舟骨骨折的螺钉居中固定:生物力学试验[J]. 北京大学学报(医学版), 2013, 45(5): 684-687.
[8] 李智, 王新知, 高承志, IVO Krejci. 计算机辅助设计与制作一体化玻璃纤维桩核修复漏斗状根管的抗疲劳和抗折性能[J]. 北京大学学报(医学版), 2013, 45(1): 59-63.
[9] 彭长亮*, 杨毅*, 孙馨, 郭卫. 高渗盐水灭活自体骨再植的动物实验[J]. 北京大学学报(医学版), 2012, 44(6): 950-953.
[10] 张红芳 , 赵超勇, 范红松, 张晖 , 裴福兴, 王光林. 多孔钛修复兔桡骨骨缺损的组织学和力学研究[J]. 北京大学学报(医学版), 2011, 43(5): 724-729.
[11] 李永舵, 刘书茂, 贾金生, 周君琳 . 后踝骨折内固定方法的选择:生物力学及临床应用研究[J]. 北京大学学报(医学版), 2011, 43(5): 718-723.
[12] 李淳德, 孙浩林, 于峥嵘. 腰椎棘突间固定对邻近节段刚度影响的生物力学研究[J]. 北京大学学报(医学版), 2011, 43(5): 657-660.
[13] 那宾*, 许天民, 林久祥. Procrusts重叠以及多元统计应用于安氏Ⅱ类错牙合颅面分类的研究[J]. 北京大学学报(医学版), 2009, 41(1): 71-75.
[14] 刘亦洪, 冯海兰, 包亦望, 邱岩. 基底瓷与饰瓷的厚度比对IPS Empress Ⅱ热压铸陶瓷抗弯强度的影响[J]. 北京大学学报(医学版), 2007, 39(1): 64-66.
[15] 韩冰, 许天民, 林久祥. 普通坐标和procrusts重叠标准化坐标对安氏Ⅰ类错(牙合)进行聚类和判别分析的对比研究[J]. 北京大学学报(医学版), 2007, 39(1): 54-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!