北京大学学报(医学版) ›› 2021, Vol. 53 ›› Issue (6): 1026-1031. doi: 10.19723/j.issn.1671-167X.2021.06.003

• 论著 • 上一篇    下一篇

类风湿关节炎患者趋化因子CXCL9和CXCL10在骨侵蚀中的作用

钟华,徐丽玲,白明欣,苏茵()   

  1. 北京大学人民医院风湿免疫科,风湿病机制及免疫诊断北京市重点实验室,北京 100044
  • 收稿日期:2021-07-28 出版日期:2021-12-18 发布日期:2021-12-13
  • 通讯作者: 苏茵 E-mail:suyin0921@163.com
  • 基金资助:
    国家自然科学基金(81671609);北京市科技计划(Z191100006619111)

Effect of chemokines CXCL9 and CXCL10 on bone erosion in patients with rheumatoid arthritis

ZHONG Hua,XU Li-ling,BAI Ming-xin,SU Yin()   

  1. Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Beijing 100044, China
  • Received:2021-07-28 Online:2021-12-18 Published:2021-12-13
  • Contact: Yin SU E-mail:suyin0921@163.com
  • Supported by:
    National Natural Science Foundation of China(81671609);Beijing Scientific Program(Z191100006619111)

摘要:

目的:检测趋化因子CXCL9和CXCL10在类风湿关节炎(rheumatoid arthritis, RA)患者外周血中的水平,分析其对RA发生骨侵蚀的作用,探讨CXCL9和CXCL10在RA中的临床意义。方法:采用酶联免疫吸附试验(enzyme linked immunosorbent assay, ELISA)检测105例RA患者、90例骨关节炎(osteoarthritis, OA)患者和25例健康对照者(healthy control, HC)血清CXCL9、CXCL10水平并比较各组间差异,分析其与RA临床特征、实验室指标、疾病活动性及骨侵蚀的相关性,采用Logistic回归分析血清CXCL9和CXCL10水平与RA患者骨侵蚀的相关性。结果:RA组患者血清CXCL9、CXCL10水平显著高于OA组和HC组(P<0.01、P<0.01),RA患者血清CXCL9水平与肿胀关节数(swollen joints, SJC)、类风湿因子(rheumatoid factor, RF)呈正相关(P<0.05),血清CXCL10水平与压痛关节数(tender joints, TJC)、SJC、C反应蛋白(C-reactive protein, CRP)、免疫球蛋白(immunoglobulin, Ig)A、IgM、RF及抗环瓜氨酸多肽抗体(anti-cyclic citrullinated peptide antibody,ACPA)呈正相关(P<0.05)。此外,血清CXCL9、CXCL10水平均与RA疾病活动度评分(disease activity score 28, DAS28)呈正相关(P=0.013、P=0.006),且高疾病活动度组(DAS28≥5.1)的血清CXCL9、CXCL10水平显著高于中低疾病活动度组(DAS28<5.1,P<0.05)。Logistic回归分析提示,病程长、高疾病活动度及血清CXCL9水平升高与RA患者发生骨侵蚀相关(P<0.05)。结论:RA患者血清趋化因子CXCL9和CXCL10的表达水平升高,与RA疾病活动性及骨侵蚀具有相关性,可能参与了RA的发病及骨破坏过程。

关键词: 类风湿关节炎, 骨侵蚀, 趋化因子CXCL9, 趋化因子CXCL10

Abstract:

Objective: To detect the serum level of soluble chemokines CXCL9 and CXCL10 in patients with rheumatoid arthritis (RA), and to analyze their correlation with bone erosion, as well as the clinical significance in RA. Methods: In the study, 105 cases of RA patients, 90 osteoarthritis (OA) patients and 25 healthy controls in Peking University People’s Hospital were included. All the clinical information of the patients was collected, and the serum CXCL9 and CXCL10 levels of both patients and healthy controls were measured by enzyme-linked immune sorbent assay (ELISA). CXCL9 and CXCL10 levels among different groups were compared. The correlation between serum levels with clinical/laboratory parameters and the occurrence of bone erosion in RA were analyzed. Independent sample t test, Chi square test, Mann-Whitney U test, Spearman’s rank correlation and Logistic regression were used for statistical analysis. Results: The levels of CXCL9 and CXCL10 were significantly higher in the RA patients [250.02 (126.98, 484.29) ng/L, 108.43 (55.16, 197.17) ng/L] than in the OA patients [165.05 (75.89, 266.37) ng/L, 69.00 (33.25, 104.74) ng/L] and the health controls [79.47 (38.22, 140.63) ng/L, 55.44 (18.76, 95.86) ng/L] (all P<0.01). Spearman’s correlation analysis showed that the level of serum CXCL9 was positively correlated with swollen joints (SJC), rheumatoid factor (RF) and disease activity score 28 (DAS28) (r=0.302, 0.285, 0.289; P=0.009, 0.015, 0.013). The level of serum CXCL10 was positively correlated with tender joints (TJC), SJC, C-reactive protein (CRP), immunoglobulin (Ig) A, IgM, RF, anti-cyclic citrullinated peptide antibody (ACPA), and DAS28 (r=0.339, 0.402, 0.269, 0.266, 0.345, 0.570, 0.540, 0.364; P=0.010, 0.002, 0.043, 0.045, 0.009, <0.001, <0.001, 0.006). Serum CXCL9 and CXCL10 levels in the RA patients with bone erosion were extremely higher than those without bone erosion [306.84 (234.02, 460.55) ng/L vs. 149.90 (75.88, 257.72) ng/L, 153.74 (89.50, 209.59) ng/L vs. 54.53 (26.30, 83.69) ng/L, respectively] (all P<0.01). Logistic regression analysis showed that disease duration, DAS28 and serum level of CXCL9 were correlated with bone erosion in the RA patients (P<0.05). Conclusion: Serum levels of CXCL9 and CXCL10 were remarkably elevated in patients with RA, and correlated with disease activities and occurrence of bone erosion. Chemokines CXCL9 and CXCL10 might be involved in the pathogenesis and bone destruction in RA.

Key words: Rheumatoid arthritis, Bone erosion, Chemokine CXCL9, Chemokine CXCL10

中图分类号: 

  • R593.22

图1

RA患者、OA患者及健康人血清CXCL9和CXCL10的水平比较"

表1

RA患者血清CXCL9和CXCL10水平与临床特征及实验室指标的相关性"

Characteristics CXCL9 CXCL10
r P r P
SJC 0.302 0.009 0.402 0.002
TJC 0.160 0.176 0.339 0.010
ESR 0.145 0.222 0.201 0.135
CRP 0.076 0.523 0.269 0.043
IgA 0.161 0.175 0.266 0.045
IgG 0.067 0.571 0.192 0.153
IgM 0.229 0.051 0.345 0.009
RF 0.285 0.015 0.570 <0.001
ACPA 0.031 0.793 0.540 <0.001

图2

血清CXCL9和CXCL10与RA患者疾病活动度的相关性"

表2

发生与未发生骨侵蚀的RA患者临床特征及实验室指标"

Items All subjects Without bone erosion With bone erosion P value
Patients, n 52 17 35
Gender, n
Female 38 12 26 0.778
Male 14 5 9
Age/years 56 (52, 66) 55 (51, 66) 57 (52, 70) 0.667
Disease duration/month 60 (21, 204) 36 (8, 66) 84 (24, 240) 0.010
SJC, n 4 (1, 8) 2 (0, 8) 5 (2, 8) 0.234
TJC, n 4 (1, 8) 5 (2, 8) 2 (1, 7) 0.169
ESR/(mm/h) 52 (24, 100) 33 (13, 88) 61 (36, 102) 0.077
CRP/(mg/L) 21.30 (6.42, 53.25) 11.40 (3.07, 48.95) 30.90 (9.10, 53.80) 0.084
IgA/(g/L) 2.43 (1.75, 3.59) 2.01 (1.69, 2.86) 2.59 (1.80, 3.81) 0.172
IgG/(g/L) 11.95 (10.43, 13.30) 10.70 (9.77, 12.80) 12.40 (10.70, 14.30) 0.141
IgM/(g/L) 1.29 (0.82, 1.78) 1.22 (0.73, 1.51) 1.34 (0.92, 1.93) 0.310
RF/(IU/mL) 136.50 (31.28, 340.25) 133.00 (34.15, 404.50) 138.00 (28.00, 353.00) 0.984
ACPA/(U/mL) 144.57 (23.91, 200.00) 118.02 (63.96, 200.00) 155.81 (8.36, 200.00) 0.579
DAS28 4.74±1.26 4.52±1.35 4.85±1.22 0.385
CXCL9/(ng/L) 280.27 (150.50, 439.83) 149.90 (75.88, 257.72) 306.84 (234.02, 460.55) <0.001
CXCL10/(ng/L) 107.10 (52.62, 200.33) 54.43 (26.30, 83.69) 153.74 (89.50, 209.59) 0.001

表3

血清CXCL9、CXCL10水平与RA骨侵蚀的相关性分析"

Items β Wald OR 95%CI P value
Disease duration 0.015 6.550 1.015 1.003-1.026 0.010
ACPA -0.005 0.834 0.995 0.985-1.006 0.361
DAS28 1.063 4.539 2.896 1.089-7.701 0.033
CXCL9 0.011 8.339 1.012 1.004-1.019 0.004
CXCL10 -0.004 3.204 0.996 0.992-1.000 0.073
[1] Sparks JA. Rheumatoid arthritis [J]. Ann Intern Med, 2019, 170(1): ITC1-ITC16.
doi: 10.7326/AITC201901010
[2] Zhu H, Li R, Da Z, et al. Remission assessment of rheumatoid arthritis in daily practice in China: A cross-sectional observational study[J]. Clin Rheumatol, 2018, 37(3):597-605.
doi: 10.1007/s10067-017-3850-z
[3] Zhou Y, Wang X, An Y, et al. Disability and health-related quality of life in Chinese patients with rheumatoid arthritis: A cross-sectional study[J]. Int J Rheum Dis, 2018, 21(9):1709-1715.
doi: 10.1111/apl.2018.21.issue-9
[4] Poeta VM, Massara M, Capucetti A, et al. Chemokines and chemokine receptors: new targets for cancer immunotherapy[J]. Front Immunol, 2019, 10:379.
doi: 10.3389/fimmu.2019.00379
[5] Susek KH, Karvouni M, Alici E, et al. The role of CXC chemokine receptors 1-4 on immune cells in the tumor microenvironment[J]. Front Immunol, 2018, 9:2159.
doi: 10.3389/fimmu.2018.02159
[6] Tokunaga R, Zhang W, Naseem M, et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation: A target for novel cancer therapy[J]. Cancer Treat Rev, 2018, 63:40-47.
doi: S0305-7372(17)30199-8 pmid: 29207310
[7] McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis[J]. N Engl J Med, 2011, 365(23):2205-2219.
doi: 10.1056/NEJMra1004965
[8] Muntyanu A, Abji F, Liang K, et al. Differential gene and protein expression of chemokines and cytokines in synovial fluid of patients with arthritis[J]. Arthritis Res Ther, 2016, 18(1):296.
doi: 10.1186/s13075-016-1196-6
[9] Antonelli A, Ferrari SM, Giuggioli D, et al. Chemokine (C-X-C motif) ligand CXCL10 in autoimmune diseases[J]. Autoimmun Rev, 2014, 13(3):272-280.
doi: 10.1016/j.autrev.2013.10.010
[10] Aletaha D, Neogi T, Silman AJ, et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative[J]. Arthritis Rheum, 2010, 62(9):2569-2581.
doi: 10.1002/art.27584
[11] Zhang W, Doherty M, Peat G, et al. EULAR evidence-based recommendations for the diagnosis of knee osteoarthritis[J]. Ann Rheum Dis, 2010, 69(3):483-489.
doi: 10.1136/ard.2009.113100 pmid: 19762361
[12] Prevoo ML, van’t Hof MA, Kuper HH, et al. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis[J]. Arthritis Rheum, 1995, 38(1):44-48.
doi: 10.1002/art.v38:1
[13] Fransen J, van Riel PL. The disease activity score and the EULAR response criteria [J]. Rheum Dis Clin North Am, 2009, 35(4): 745-757, vii-viii.
doi: 10.1016/j.rdc.2009.10.001
[14] Arnett FC, Edworthy SM, Bloch DA, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis[J]. Arthritis Rheum, 1988, 31(3):315-324.
doi: 10.1002/(ISSN)1529-0131
[15] Ostergaard M, Peterfy C, Conaghan P, et al. OMERACT rheumatoid arthritis magnetic resonance imaging studies. Core set of MRI acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system[J]. J Rheumatol, 2003, 30(6):1385-1386.
[16] Bruyn GA, Hanova P, Iagnocco A, et al. Ultrasound definition of tendon damage in patients with rheumatoid arthritis. Results of a OMERACT consensus-based ultrasound score focusing on the diagnostic reliability[J]. Ann Rheum Dis, 2014, 73(11):1929-1934.
doi: 10.1136/annrheumdis-2013-203596
[17] Zeidler H. The need to better classify and diagnose early and very early rheumatoid arthritis[J]. J Rheumatol, 2012, 39(2):212-217.
doi: 10.3899/jrheum.110967
[18] Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: Positioning cells for host defense and immunity[J]. Annu Rev Immunol, 2014, 32:659-702.
doi: 10.1146/annurev-immunol-032713-120145 pmid: 24655300
[19] Korniejewska A, McKnight AJ, Johnson Z, et al. Expression and agonist responsiveness of CXCR3 variants in human T lymphocytes[J]. Immunology, 2011, 132(4):503-515.
doi: 10.1111/j.1365-2567.2010.03384.x pmid: 21255008
[20] Schoenborn JR, Wilson CB. Regulation of interferon-gamma during innate and adaptive immune responses[J]. Adv Immunol, 2007, 96:41-101.
pmid: 17981204
[21] Farber JM. Mig and IP-10: CXC chemokines that target lymphocytes[J]. J Leukoc Biol, 1997, 61(3):246-257.
doi: 10.1002/jlb.1997.61.issue-3
[22] Kwak HB, Ha H, Kim HN, et al. Reciprocal cross-talk between RANKL and interferon-gamma-inducible protein 10 is responsible for bone-erosive experimental arthritis[J]. Arthritis Rheum, 2008, 58(5):1332-1342.
doi: 10.1002/(ISSN)1529-0131
[23] Kraan MC, Patel DD, Haringman JJ, et al. The development of clinical signs of rheumatoid synovial inflammation is associated with increased synjournal of the chemokine CXCL8 (interleukin-8)[J]. Arthritis Res, 2001, 3(1):65-71.
pmid: 11178128
[1] 高超,陈立红,王莉,姚鸿,黄晓玮,贾语博,刘田. 类风湿关节炎合并纤维肌痛简易分类标准的临床验证[J]. 北京大学学报(医学版), 2022, 54(2): 278-282.
[2] 张璐,胡小红,陈澄,蔡月明,王庆文,赵金霞. 类风湿关节炎初治患者颈椎失稳情况及临床特征[J]. 北京大学学报(医学版), 2021, 53(6): 1049-1054.
[3] 罗靓,霍文岗,张钦,李春. 类风湿关节炎合并角膜溃疡的临床特点和相关因素分析[J]. 北京大学学报(医学版), 2021, 53(6): 1032-1036.
[4] 娄雪,廖莉,李兴珺,王楠,刘爽,崔若玫,徐健. 类风湿关节炎患者外周血TWEAK基因启动子区甲基化状态及其表达[J]. 北京大学学报(医学版), 2021, 53(6): 1020-1025.
[5] 曹迪,王燕,王柳青,孙晓麟,黄妃,孟洋,任丽丽,张学武. 血浆Dickkopf-1在类风湿关节炎患者中的表达及其与外周血T细胞亚群的相关性[J]. 北京大学学报(医学版), 2021, 53(2): 255-260.
[6] 赵凯,常志芳,王志华,庞春艳,王永福. 基因沉默肽基精氨酸脱亚胺酶4的表达对胶原诱导关节炎小鼠肺间质病变的影响[J]. 北京大学学报(医学版), 2021, 53(2): 235-239.
[7] 钟剑球,曾沛英,王庆文. 类风湿关节炎合并淋巴水肿2例及文献回顾[J]. 北京大学学报(医学版), 2020, 52(6): 1157-1161.
[8] 张璐,胡小红,王庆文,蔡月明,赵金霞,刘湘源. 类风湿关节炎合并颈椎失稳的人群分布及临床特征[J]. 北京大学学报(医学版), 2020, 52(6): 1034-1039.
[9] 唐果,龙丽,韩雅欣,彭清,刘佳君,尚华. 类风湿关节炎合并结核感染的临床特点及相关因素[J]. 北京大学学报(医学版), 2020, 52(6): 1029-1033.
[10] 张警丰,叶修玲,段萌,周小利,姚中强,赵金霞. 抗核抗体阳性类风湿关节炎的临床和实验室检查特点[J]. 北京大学学报(医学版), 2020, 52(6): 1023-1028.
[11] 陈家丽,金月波,王一帆,张晓盈,李静,姚海红,何菁,李春. 老年发病类风湿关节炎的临床特征及其心血管疾病危险因素分析:一项大样本横断面临床研究[J]. 北京大学学报(医学版), 2020, 52(6): 1040-1047.
[12] 彭嘉婧,刘田. 类风湿关节炎合并色素沉着绒毛结节性滑膜炎1例及文献回顾[J]. 北京大学学报(医学版), 2020, 52(6): 1135-1139.
[13] 罗采南,李正芳,武丽君,陈海娟,杨春梅,徐文晖,刘小玲,唐薇,乔平,热娜·白合提亚. 类风湿关节炎不同分类标准的多中心临床比较[J]. 北京大学学报(医学版), 2020, 52(5): 897-901.
[14] 竺红,赵丽娟,周艳,陈瑶. 抗氨基甲酰化蛋白抗体在类风湿关节炎合并肺间质病变早期诊断中的价值[J]. 北京大学学报(医学版), 2019, 51(6): 1003-1007.
[15] 张晓英,靳家扬,何菁,甘雨舟,陈家丽,赵晓珍,刘佳佳,尤旭杰,李雪,郭建萍,李小峰,李静,李茹,栗占国. 类风湿关节炎患者风湿病家族史特征及临床意义[J]. 北京大学学报(医学版), 2019, 51(3): 439-444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张三. 中文标题测试[J]. 北京大学学报(医学版), 2010, 42(1): 1 -10 .
[2] 赵磊, 王天龙 . 右心室舒张末期容量监测用于肝移植术中容量管理的临床研究[J]. 北京大学学报(医学版), 2009, 41(2): 188 -191 .
[3] 万有, , 韩济生, John E. Pintar. 孤啡肽基因敲除小鼠电针镇痛作用增强[J]. 北京大学学报(医学版), 2009, 41(3): 376 -379 .
[4] 张燕, 韩志慧, 钟延丰, 王盛兰, 李玲玲, 郑丹枫. 骨骼肌活组织检查病理诊断技术的改进及应用[J]. 北京大学学报(医学版), 2009, 41(4): 459 -462 .
[5] 赵奇, 薛世华, 刘志勇, 吴凌云. 同向施压测定自酸蚀与全酸蚀粘接系统粘接强度[J]. 北京大学学报(医学版), 2010, 42(1): 82 -84 .
[6] 林红, 王玉凤, 吴野平. 学校生活技能教育对小学三年级学生行为问题影响的对照研究[J]. 北京大学学报(医学版), 2007, 39(3): 319 -322 .
[7] 丰雷, 程嘉, 王玉凤. 注意缺陷多动障碍儿童的运动协调功能[J]. 北京大学学报(医学版), 2007, 39(3): 333 -336 .
[8] 李岳玲, 钱秋瑾, 王玉凤. 儿童注意缺陷多动障碍成人期预后及其预测因素[J]. 北京大学学报(医学版), 2007, 39(3): 337 -340 .
[9] . 书讯[J]. 北京大学学报(医学版), 2007, 39(3): 225 -328 .
[10] 牟向东, 王广发, 刁小莉, 阙呈立. 肺黏膜相关淋巴组织型边缘区B细胞淋巴瘤一例[J]. 北京大学学报(医学版), 2007, 39(4): 346 -350 .