北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (3): 387-393. doi: 10.19723/j.issn.1671-167X.2022.03.001
• 论著 • 下一篇
陈曦1,王斯悦1,薛恩慈1,王雪珩1,彭和香1,范梦1,王梦莹1,武轶群1,秦雪英1,李劲1,吴涛1,*(),朱洪平2,李静3,周治波2,陈大方1,胡永华1
Xi CHEN1,Si-yue WANG1,En-ci XUE1,Xue-heng WANG1,He-xiang PENG1,Meng FAN1,Meng-ying WANG1,Yi-qun WU1,Xue-ying QIN1,Jing LI1,Tao WU1,*(),Hong-ping ZHU2,Jing LI3,Zhi-bo ZHOU2,Da-fang CHEN1,Yong-hua HU1
摘要:
目的: 在中国人非综合征型唇裂伴或不伴腭裂(non-syndromic cleft lip with or without palate, NSCL/P)核心家系中,利用全外显子组测序探索与NSCL/P发病相关的新生突变位点。方法: 对22个中国NSCL/P核心家系进行全外显子组测序,采用基因组分析工具包(Genome Analysis ToolKit, GATK)通过对比亲代与子代同一位点的等位基因识别新生突变位点,采用SnpEff软件对位点进行功能注释。对新生突变位点进行富集分析,检验全外显子区域内存在的新生突变数量是否高于预期值,以及是否存在包含新生突变数量显著高于预期值的基因。通过查阅文献总结既往研究提示与NSCL/P发病存在较强证据支持的基因,根据注释信息筛选能够引起蛋白质改变的新生突变位点,对该类位点所在基因编码的蛋白质与NSCL/P相关基因编码的蛋白质进行交互作用分析。利用R软件的denovolyzeR包进行富集分析(Bonferroni多重检验校正:P=0.05/n,n为基因个数)。利用STRING数据库预测新生突变所在基因与已知NSCL/P致病基因编码的蛋白质间的交互作用。结果: 全外显子组测序得到的位点中共有339 908个位点通过质量控制,经GATK软件比对共筛选出345个高置信度新生突变,其中错义突变44个,无义突变1个,经典剪接位点2个,同义突变20个,内含子区或基因间区位点278个。富集分析显示,全外显子组中引起蛋白质改变的新生突变数量显著高于预期值(P < 0.05),KRTCAP2、HMCN2、ANKRD36C、ADGRL2和DIPK2A 5个基因所含的新生突变位点高于预期(P < 0.05/(2×19 618))。蛋白质交互作用分析纳入46个包含能够引起蛋白质序列改变的新生突变所在的基因及13个既往研究提示与NSCL/P存在关联的基因,两类基因编码的蛋白质之间存在6组交互作用,其中RGPD4与SUMO1编码的蛋白质的交互作用证据可信度最高,STRING数据库交互作用评分为0.868。结论: 研究为NSCL/P的发病提供了新的证据,对携带新生突变的基因进行功能分析有助于揭示复杂疾病的遗传结构。
中图分类号:
1 |
Worley ML , Patel KG , Kilpatrick LA . Cleft lip and palate[J]. Clin Perinatol, 2018, 45 (4): 661- 678.
doi: 10.1016/j.clp.2018.07.006 |
2 |
Beaty TH , Murray JC , Marazita ML , et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4[J]. Nat Genet, 2010, 42 (6): 525- 529.
doi: 10.1038/ng.580 |
3 | Nasreddine G, El Hajj J, Ghassibe-Sabbagh M. Orofacial clefts embryology, classification, epidemiology, and genetics[J/OL]. Mutat Res Rev Mutat Res, 2021, 787: 108373(2021-02-28)[2022-02-01]. https://pubmed.ncbi.nlm.nih.gov/34083042/. |
4 |
van Rooij IA , Ludwig KU , Welzenbach J , et al. Non-syndromic cleft lip with or without cleft palate: Genome-wide association study in Europeans identifies a suggestive risk locus at 16p12.1 and supports as a clefting susceptibility gene[J]. Genes (Basel), 2019, 10 (12): 1023.
doi: 10.3390/genes10121023 |
5 |
Bishop MR , Diaz Perez KK , Sun M , et al. Genome-wide enrichment of de novo coding mutations in orofacial cleft trios[J]. Am J Hum Genet, 2020, 107 (1): 124- 136.
doi: 10.1016/j.ajhg.2020.05.018 |
6 |
Jin ZB , Li Z , Liu Z , et al. Identification of de novo germline mutations and causal genes for sporadic diseases using trio-based whole-exome/genome sequencing[J]. Biol Rev Camb Philos Soc, 2018, 93 (2): 1014- 1031.
doi: 10.1111/brv.12383 |
7 |
Conrad DF , Keebler JE , DePristo MA , et al. Variation in genome-wide mutation rates within and between human families[J]. Nat Genet, 2011, 43 (7): 712- 714.
doi: 10.1038/ng.862 |
8 |
Veltman JA , Brunner HG . De novo mutations in human genetic disease[J]. Nat Rev Genet, 2012, 13 (8): 565- 575.
doi: 10.1038/nrg3241 |
9 |
Coe BP , Stessman HAF , Sulovari A , et al. Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity[J]. Nat Genet, 2019, 51 (1): 106- 116.
doi: 10.1038/s41588-018-0288-4 |
10 |
Mitra I , Huang B , Mousavi N , et al. Patterns of de novo tandem repeat mutations and their role in autism[J]. Nature, 2021, 589 (7841): 246- 250.
doi: 10.1038/s41586-020-03078-7 |
11 |
Jin SC , Homsy J , Zaidi S , et al. Contribution of rare inherited and de novo variants in 2 871 congenital heart disease probands[J]. Nat Genet, 2017, 49 (11): 1593- 1601.
doi: 10.1038/ng.3970 |
12 |
Watkins WS , Hernandez EJ , Wesolowski S , et al. De novo and recessive forms of congenital heart disease have distinct genetic and phenotypic landscapes[J]. Nat Commun, 2019, 10 (1): 4722.
doi: 10.1038/s41467-019-12582-y |
13 | Ware JS, Samocha KE, Homsy J, et al. Interpreting de novo variation in human disease using denovolyzeR[J/OL]. Curr Protoc Hum Genet, 2015, 87: 7.25.1 -7.25.15(2015-08-06)[2022-02-01]. https://pubmed.ncbi.nlm.nih.gov/26439716/. |
14 |
Szklarczyk D , Gable AL , Nastou KC , et al. The STRING database in 2021:Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49 (D1): D605- D612.
doi: 10.1093/nar/gkaa1074 |
15 |
Saleem K , Zaib T , Sun W , et al. Assessment of candidate genes and genetic heterogeneity in human non syndromic orofacial clefts specifically non syndromic cleft lip with or without palate[J]. Heliyon, 2019, 5 (12): e03019.
doi: 10.1016/j.heliyon.2019.e03019 |
16 |
Vezain M , Lecuyer M , Rubio M , et al. A de novo variant in ADGRL2 suggests a novel mechanism underlying the previously undescribed association of extreme microcephaly with severely reduced sulcation and rhombencephalosynapsis[J]. Acta Neuropathol Commun, 2018, 6 (1): 109.
doi: 10.1186/s40478-018-0610-5 |
17 |
Shao R , Liu J , Yan G , et al. Cdh1 regulates craniofacial development via APC-dependent ubiquitination and activation of Goosecoid[J]. Cell Res, 2016, 26 (6): 699- 712.
doi: 10.1038/cr.2016.51 |
18 |
Hamann J , Aust G , Araç D , et al. International union of basic and clinical pharmacology. XCIV. Adhesion G protein-coupled receptors[J]. Pharmacol Rev, 2015, 67 (2): 338- 367.
doi: 10.1124/pr.114.009647 |
19 |
Sevastre AS , Buzatu IM , Baloi C , et al. ELTD1:An emerging silent actor in cancer drama play[J]. Int J Mol Sci, 2021, 22 (10): 5151.
doi: 10.3390/ijms22105151 |
20 |
Lek M , Karczewski KJ , Minikel EV , et al. Analysis of protein-coding genetic variation in 60, 706 humans[J]. Nature, 2016, 536 (7616): 285- 291.
doi: 10.1038/nature19057 |
21 |
Huang N , Lee I , Marcotte EM , et al. Characterising and predicting haploinsufficiency in the human genome[J]. PLoS Genet, 2010, 6 (10): e1001154.
doi: 10.1371/journal.pgen.1001154 |
22 |
Hiramatsu H , Tadokoro S , Nakanishi M , et al. Latrotoxin-induced exocytosis in mast cells transfected with latrophilin[J]. Toxicon, 2010, 56 (8): 1372- 1380.
doi: 10.1016/j.toxicon.2010.08.002 |
23 |
Zepeda-Mendoza CJ , Bardon A , Kammin T , et al. Phenotypic interpretation of complex chromosomal rearrangements informed by nucleotide-level resolution and structural organization of chromatin[J]. Eur J Hum Genet, 2018, 26 (3): 374- 381.
doi: 10.1038/s41431-017-0068-0 |
24 |
Passi GR , Bhatnagar S . Rhombencephalosynapsis[J]. Pediatr Neurol, 2015, 52 (6): 651- 652.
doi: 10.1016/j.pediatrneurol.2015.02.005 |
25 |
Birnbaum S , Ludwig KU , Reutter H , et al. Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24[J]. Nat Genet, 2009, 41 (4): 473- 477.
doi: 10.1038/ng.333 |
26 |
Mangold E , Ludwig KU , Birnbaum S , et al. Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate[J]. Nat Genet, 2010, 42 (1): 24- 26.
doi: 10.1038/ng.506 |
27 |
Beaty TH , Taub MA , Scott AF , et al. Confirming genes influencing risk to cleft lip with/without cleft palate in a case-parent trio study[J]. Hum Genet, 2013, 132 (7): 771- 781.
doi: 10.1007/s00439-013-1283-6 |
28 |
Parry DA , Logan CV , Stegmann AP , et al. SAMS, a syndrome of short stature, auditory-canal atresia, mandibular hypoplasia, and skeletal abnormalities is a unique neurocristopathy caused by mutations in Goosecoid[J]. Am J Hum Genet, 2013, 93 (6): 1135- 1142.
doi: 10.1016/j.ajhg.2013.10.027 |
29 |
Ulmer B , Tingler M , Kurz S , et al. A novel role of the organizer gene Goosecoid as an inhibitor of Wnt/PCP-mediated convergent extension in Xenopus and mouse[J]. Sci Rep, 2017, 7, 43010.
doi: 10.1038/srep43010 |
30 |
Yu Y , Zuo X , He M , et al. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity[J]. Nat Commun, 2017, 8, 14364.
doi: 10.1038/ncomms14364 |
31 |
Kalisz M , Winzi M , Bisgaard HC , et al. EVEN-SKIPPED HOMEOBOX 1 controls human ES cell differentiation by directly repressing GOOSECOID expression[J]. Dev Biol, 2012, 362 (1): 94- 103.
doi: 10.1016/j.ydbio.2011.11.017 |
32 |
Rivera-Pérez JA , Mallo M , Gendron-Maguire M , et al. Goosecoid is not an essential component of the mouse gastrula organizer but is required for craniofacial and rib development[J]. Development, 1995, 121 (9): 3005- 3012.
doi: 10.1242/dev.121.9.3005 |
33 |
Yamada G , Mansouri A , Torres M , et al. Targeted mutation of the murine goosecoid gene results in craniofacial defects and neonatal death[J]. Development, 1995, 121 (9): 2917- 2922.
doi: 10.1242/dev.121.9.2917 |
34 |
Feitosa NM , Zhang J , Carney TJ , et al. Hemicentin 2 and fibulin 1 are required for epidermal-dermal junction formation and fin mesenchymal cell migration during zebrafish development[J]. Dev Biol, 2012, 369 (2): 235- 248.
doi: 10.1016/j.ydbio.2012.06.023 |
[1] | 薛恩慈, 陈曦, 王雪珩, 王斯悦, 王梦莹, 李劲, 秦雪英, 武轶群, 李楠, 李静, 周治波, 朱洪平, 吴涛, 陈大方, 胡永华. 中国人群非综合征型唇裂伴或不伴腭裂的单核苷酸多态性遗传度[J]. 北京大学学报(医学版), 2024, 56(5): 775-780. |
|