北京大学学报(医学版) ›› 2024, Vol. 56 ›› Issue (2): 207-212. doi: 10.19723/j.issn.1671-167X.2024.02.002

• 论著 • 上一篇    下一篇

NEAT1、miR-27a-3p在阿尔茨海默病患者血清和脑脊液中的表达关系

何丽杰1,*(),张春艳2,王静1   

  1. 1. 天津市第五中心医院检验科,天津 300450
    2. 天津市第五中心医院天津市早产儿器官发育表观遗传重点实验室,天津 300450
  • 收稿日期:2023-09-18 出版日期:2024-04-18 发布日期:2024-04-10
  • 通讯作者: 何丽杰 E-mail:irfsq59@163.com
  • 基金资助:
    天津市科技计划项目(21JCZDJC01270)

Expression relationship and significance of NEAT1 and miR-27a-3p in serum and cerebrospinal fluid of patients with Alzheimer disease

Lijie HE1,*(),Chunyan ZHANG2,Jing WANG1   

  1. 1. Department of Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, China
    2. Tianjin Key Laboratory of Organ Development Epigenetics of Premature Infants, Tianjin Fifth Central Hospital, Tianjin 300450, China
  • Received:2023-09-18 Online:2024-04-18 Published:2024-04-10
  • Contact: Lijie HE E-mail:irfsq59@163.com
  • Supported by:
    the Tianjin Science and Technology Program(21JCZDJC01270)

RICH HTML

  

摘要:

目的: 探究长链非编码RNA核富含丰富的转录本1(long chain non-coding RNA nuclear-enriched abundant transcript 1,LncRNA NEAT1)、miR-27a-3p在阿尔茨海默病(Alzheimer disease,AD)患者血清和脑脊液中的表达关系及意义。方法: 选择2019年10月至2021年9月天津市第五中心医院神经内科收治的AD患者66例作为病例组,根据临床痴呆评定量表(clinical dementia rating,CDR)评分分为轻度组(≤1分,n=41)与中重度组(>1分,n=25);另取同期门诊其他就诊患者血清和脑脊液标本66例志愿者作为对照组。收集所有受试者的一般资料并评估认知程度,采用实时荧光定量PCR检测血清和脑脊液miR-27a-3p、NEAT1表达水平,酶联免疫吸附试验检测脑脊液β-淀粉样前体蛋白裂解酶1(β-site amyloid precursor protein cleaving enzyme 1,BACE1)、β淀粉样蛋白(amyloid β,Aβ)40和Aβ42水平,采用Spearman法分析血清miR-27a-3p、NEAT1水平与简易精神状态检测量表的相关性,采用Pearson法分析血清miR-27a-3p、NEAT1水平与Aβ沉积平均标准摄取值比率(standardized uptake value ratio,SUVR)及脑脊液miR-27a-3p、NEAT1、BACE1、Aβ42、Aβ40水平的相关性。结果: MMSE评分[21 (17,25),9(7,11) vs. 27 (21,34)]、MoCA评分[17 (12,21),10 (7,13) vs. 27 (21,31)]、血清miR-27a-3p水平(0.55±0.13,0.46±0.06 vs. 0.97±0.22)、脑脊液miR-27a-3p(0.48±0.10,0.35±0.10 vs. 1.03±0.31)、Aβ42水平[(303.55±36.77) ng/L,(231.45±34.14) ng/L vs.(499.99±53.63) ng/L]及Aβ42/Aβ40比值(0.030±0.008,0.022±0.007 vs. 0.048±0.010)轻度组、中重度组AD患者均低于对照组(P均<0.05),且中重度组AD患者较轻度组低(P均<0.05);血清NEAT1水平(2.31±0.64,3.13±0.76 vs. 1.05±0.20)、SUVR(1.50±0.29,1.76±0.52 vs. 0.74±0.15)及脑脊液NEAT1(3.51±1.24,4.30±1.65 vs. 1.01±0.23)、BACE1水平[(55.78±5.98) μg/L,(72.32±16.08) μg/L vs. (21.39±3.73) μg/L]轻度组、中重度组AD患者均高于对照组(P均<0.05),且中重度组AD患者较轻度组高(P均<0.05)。AD患者血清NEAT1水平与SUVR及脑脊液NEAT1、BACE1呈正相关(r=0.350,0.606,0.341,P<0.05),与MMSE评分、MoCA评分呈负相关(r=-0.473,-0.482,P均<0.05);血清miR-27a-3p水平与脑脊液miR-27a-3p水平、MMSE评分、MoCA评分呈正相关(r=0.695,0.424,0.412,P<0.05),与SUVR及脑脊液BACE1水平呈负相关(r=-0.521、-0.447,P均<0.05)。结论: NEAT1、miR-27a-3p在AD患者血清及脑脊液中表达趋势具有一致性,NEAT1水平均升高,miR-27a-3p水平均降低,二者水平呈负相关,与AD患者脑中Aβ沉积程度有关,并参与AD的病情进展。

关键词: 阿尔茨海默病, 长链非编码RNA核富含丰富的转录本1, miR-27a-3p, β淀粉样蛋白, 相关性

Abstract:

Objective: To explore the expression relationship and significance of long chain non-coding RNA nuclear-enriched abundant transcript 1 (LncRNA NEAT1) and miR-27a-3p in serum and cerebrospinal fluid of patients with Alzheimer disease (AD). Methods: Sixty-six AD patients received by the department of neurology of our hospital from October 2019 to September 2021 were gathered, according to the clinical dementia rating scale score, they were grouped into mild group (≤1 point, n=41) and moderate-to-severe group (>1 point, n=25). Another 66 cases of serum and cerebrospinal fluid samples from outpatient physical examination personnel were regarded as the control group. The general information on all subjects was recorded and cognition was assessed; real-time quantitative PCR was performed to measure the expression levels of miR-27a-3p and NEAT1 in serum and cerebrospinal fluid; enzyme-linked immunosorbent assay was performed to measure the protein levels of β-amyloid precursor protein cleaving enzyme 1 (BACE1), β-amyloid (Aβ) 40 and Aβ42 in cerebrospinal fluid; Spearman' s method was performed to analyze the correlation of serum miR-27a-3p and NEAT1 levels with mini-mental state examination (MMSE) and montreal cognitive assessment (MoCA) scores; Pearson method was performed to analyze the correlation between serum miR-27a-3p and NEAT1 levels and Aβ deposition standard uptake value ratio (SUVR) and cerebrospinal fluid miR-27a-3p, NEAT1, BACE1, Aβ42 and Aβ40 levels. Results: The MMSE score [21 (17, 25), 9(7, 11) vs. 27 (21, 34)], MoCA score [17 (12, 21), 10 (7, 13) vs. 27 (21, 31)], serum miR-27a-3p level (0.55±0.13, 0.46±0.06 vs. 0.97±0.22), cerebrospinal fluid miR-27a-3p (0.48±0.10, 0.35±0.10 vs. 1.03±0.31), Aβ42 levels [(303.55±36.77) ng/L, (231.45±34.14) ng/L vs. (499.99±53.63) ng/L] and Aβ42/Aβ40 ratio (0.030±0.008, 0.022±0.007 vs. 0.048±0.010) of AD patients in mild group and moderate-to-severe group were all lower than those in the control group, and the moderate-to-severe group were lower than the mild group (all P < 0.05); the serum NEAT1 level (2.31±0.64, 3.13±0.76 vs. 1.05±0.20), SUVR (1.50±0.29, 1.76±0.52 vs. 0.74±0.15), and cerebrospinal fluid NEAT1 (3.51±1.24, 4.30±1.65 vs. 1.01±0.23) and BACE1 levels [(55.78±5.98) μg/L, (72.32±16.08) μg/L vs. (21.39±3.73) μg/L] were higher than those in the control group, and the moderate-to-severe group were higher than the mild group (all P < 0.05). Serum NEAT1 level in AD patients was positively correlated with SUVR, cerebrospinal fluid NEAT1 and BACE1 (r=0.350, 0.606, 0.341, P < 0.05), and negatively correlated with MMSE score and MoCA score (r=-0.473, -0.482, all P < 0.05); serum miR-27a-3p level was positively correlated with cerebrospinal fluid miR-27a-3p level, MMSE score and MoCA score (r=0.695, 0.424, 0.412, all P < 0.05), and negatively correlated with SUVR and cerebrospinal fluid BACE1 level (r=-0.521, -0.447, all P < 0.05). Conclusion: The expression trends of NEAT1 and miR-27a-3p in the serum and cerebrospinal fluid of AD patients are consistent, the level of NEAT1 is increased, and the level of miR-27a-3p is decreased. The levels of the two are negatively correlated, which is related to the degree of Aβ deposition in the brain of AD patients and is involved in the progression of AD.

Key words: Alzheimer disease(AD), Long chain non-coding RNA nuclear-enriched abundant transcript 1 (LncRNA NEAT1), miR-27a-3p, Amyloid β (Aβ), Correlation

中图分类号: 

  • R749.16

表1

AD患者与对照组一般资料比较"

Group n Age/years, $\bar x \pm s$ Gender, male/female Educational attainment/years, $\bar x \pm s$ Alcohol, n(%) Smoking, n(%) Hypertension, n(%) Diabetes mellitus, n(%) MMSE scores, M(P25, P75) MoCA scores, M(P25, P75)
Control 66 69.45±7.36 39/27 7.65±2.13 15 (22.73) 27 (40.91) 25 (37.88) 15 (22.73) 27 (21,34) 27 (21,31)
Mild 41 71.31±7.52 23/18 7.98±2.26 9 (21.95) 19 (46.34) 13 (31.71) 7 (17.07) 21 (17,25)# 17 (12,21)#
Moderate-to- severe 25 72.57±6.83 15/10 6.92±2.05 4 (16.00) 13 (52.00) 12 (48.00) 6 (24.00) 9 (7,11)#* 10 (7,13)#*
F/χ2/H 1.914 0.128 1.894 0.510 0.967 1.752 0.627 66.379 66.553
P 0.152 0.938 0.154 0.775 0.617 0.416 0.731 < 0.001 < 0.001

表2

AD患者与对照组血清NEAT1、miR-27a-3p水平比较($\bar x \pm s$)"

Group n NEAT1/GAPDH miR-27a-3p/U6
Control 66 1.05±0.20 0.97±0.22
Mild 41 2.31±0.64# 0.55±0.13#
Moderate-to-severe 25 3.13±0.76#* 0.46±0.06#*
F 180.359 114.371
P < 0.001 < 0.001

表3

AD患者与对照组SUVR及脑脊液NEAT1、miR-27a-3p、BACE1、Aβ42、Aβ40水平比较($\bar x \pm s$)"

Group n NEAT1/GAPDH miR-27a-3p/U6 BACE1/(μg/L) Aβ40/(ng/L) Aβ42/(ng/L) SUVR Aβ42/Aβ40
Control 66 1.01±0.23 1.03±0.31 21.39±3.73 10708.99±1979.17 499.99±53.63 0.74±0.15 0.048±0.010
Mild 41 3.51±1.24# 0.48±0.10# 55.78±5.98# 10477.95±2192.92# 303.55±36.77# 1.50±0.29# 0.030±0.008#
Moderate- to-severe 25 4.30±1.65#* 0.35±0.10#* 72.32±16.08#* 11019.63±2807.62#* 231.45±34.14#* 1.76±0.52#* 0.022±0.007#*
F 132.816 113.447 444.023 0.464 415.490 144.609 98.231
P < 0.001 < 0.001 < 0.001 0.630 < 0.001 < 0.001 < 0.001

表4

AD患者血清NEAT1与SUVR、认知功能评分以及脑脊液NEAT1、BACE1、Aβ42、Aβ40水平的相关性"

Serum NEAT1 SUVR NEAT1 BACE1 Aβ42 Aβ40 MMSE scores MoCA scores
r 0.350 0.606 0.341 -0.096 -0.115 -0.473 -0.482
P < 0.001 < 0.001 0.005 0.445 0.358 < 0.001 < 0.001

表5

AD患者血清miR-27a-3p与脑脊液miR-27a-3p、BACE1、Aβ42、Aβ40水平及认知功能评分的相关性"

Serum miR-27a-3p SUVR miR-27a-3p BACE1 Aβ42 Aβ40 MMSE scores MoCA scores
r -0.521 0.695 -0.447 0.074 -0.047 0.424 0.412
P < 0.001 < 0.001 < 0.001 0.554 0.710 < 0.001 < 0.001

图1

血清(A)及脑脊液(B)NEAT1与miR-27a-3p的相关性分析"

1 Villain N , Dubois B .Alzheimer' s disease including focal presentations[J].Semin Neurol,2019,39(2):213-226.
doi: 10.1055/s-0039-1681041
2 Ossenkoppele R , Pijnenburg YA , Perry DC , et al.The behavioural/dysexecutive variant of Alzheimer' s disease: Clinical, neuroimaging and pathological features[J].Brain,2015,138(Pt 9):2732-2749.
3 Scheltens P , Blennow K , Breteler MM , et al.Alzheimer' s disease[J].Lancet,2016,388(10043):505-517.
doi: 10.1016/S0140-6736(15)01124-1
4 Serrano-Pozo A , Das S , Hyman BT .APOE and Alzheimer' s disease: Advances in genetics, pathophysiology, and therapeutic approaches[J].Lancet Neurol,2021,20(1):68-80.
doi: 10.1016/S1474-4422(20)30412-9
5 Ke S , Yang Z , Yang F , et al.Long noncoding RNA NEAT1 aggravates Aβ-induced neuronal damage by targeting miR-107 in Alzheimer' s disease[J].Yonsei Med J,2019,60(7):640-650.
doi: 10.3349/ymj.2019.60.7.640
6 Zhao MY , Wang GQ , Wang NN , et al.The long-non-coding RNA NEAT1 is a novel target for Alzheimer' s disease progression via miR-124/BACE1 axis[J].Neurol Res,2019,41(6):489-497.
doi: 10.1080/01616412.2018.1548747
7 Sala Frigerio C , Lau P , Salta E , et al.Reduced expression of hsa-miR-27a-3p in CSF of patients with Alzheimer disease[J].Neurology,2013,81(24):2103-2106.
doi: 10.1212/01.wnl.0000437306.37850.22
8 Dong LX , Zhang YY , Bao HL , et al.NEAT1 promotes Alzheimer' s disease by down regulating micro-27a-3p[J].Am J Transl Res,2021,13(8):8885-8896.
9 贾建平, 魏翠柏.2018中国痴呆与认知障碍诊治指南(二): 阿尔茨海默病诊治指南[J].中华医学杂志,2018,98(13):971-977.
doi: 10.3760/cma.j.issn.0376-2491.2018.13.004
10 贾建平, 唐毅.2018中国痴呆与认知障碍诊治指南(六): 阿尔茨海默病痴呆前阶段[J].中华医学杂志,2018,98(19):1457-1460.
doi: 10.3760/cma.j.issn.0376-2491.2018.19.001
11 Smith PY , Hernandez-Rapp J , Jolivette F , et al.miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo[J].Hum Mol Genet,2015,24(23):6721-6735.
doi: 10.1093/hmg/ddv377
12 Li QS , Cai D .Integrated miRNA-seq and mRNA-seq study to identify miRNAs associated with Alzheimer' s disease using post-mortem brain tissue samples[J].Front Neurosci,2021,15(1):620899-620913.
13 Zeng T , Ni H , Yu Y , et al.BACE1-AS prevents BACE1 mRNA degradation through the sequestration of BACE1-targeting miRNAs[J].J Chem Neuroanat,2019,98(1):87-96.
14 Yue D , Guanqun G , Jingxin L , et al.Silencing of long noncoding RNA XIST attenuated Alzheimer' s disease-related BACE1 alteration through miR-124[J].Cell Biol Int,2020,44(2):630-636.
doi: 10.1002/cbin.11263
15 Fazeli S , Motovali-Bashi M , Peymani M , et al.A compound downregulation of SRRM2 and miR-27a-3p with upregulation of miR-27b-3p in PBMCs of Parkinson' s patients is associated with the early stage onset of disease[J].PLoS One,2020,15(11):e0240855-e0240875.
doi: 10.1371/journal.pone.0240855
16 王锋存, 赵秀丽, 刘军莉.阿尔茨海默病患者血清LncRNA MALAT1、LncRNA NEAT1的表达变化及临床意义[J].中国现代医学杂志,2022,32(18):77-82.
17 Hampel H , Vassar R , De Strooper B , et al.The β-secretase BACE1 in Alzheimer' s disease[J].Biol Psychiatry,2021,89(8):745-756.
doi: 10.1016/j.biopsych.2020.02.001
18 Yan R , Vassar R .Targeting the β secretase BACE1 for Alzheimer' s disease therapy[J].Lancet Neurol,2014,13(3):319-329.
doi: 10.1016/S1474-4422(13)70276-X
19 Zott B , Simon MM , Hong W , et al.A vicious cycle of β amyloid-dependent neuronal hyperactivation[J].Science,2019,365(6453):559-565.
doi: 10.1126/science.aay0198
20 Nguyen LD , Chau RK , Krichevsky AM .Small molecule drugs targeting non-coding RNAs as treatments for Alzheimer's disease and related dementias[J].Genes (Basel),2021,12(12):2005-2026.
doi: 10.3390/genes12122005
[1] 周颖,赵宁,黄竑远,李庆祥,郭传瑸,郭玉兴. 双层软组织缝合封闭技术在下颌骨中早期药物相关性颌骨骨坏死患者手术治疗中的应用[J]. 北京大学学报(医学版), 2024, 56(1): 51-56.
[2] 姚中强,李常虹,李欣艺,郭苇,翟佳羽,刘蕊,魏慧,穆荣. 抗磷脂酰丝氨酸/凝血酶原抗体与不明原因复发性流产的相关性分析[J]. 北京大学学报(医学版), 2023, 55(6): 1058-1061.
[3] 冯璐,翟佳羽,赵金霞. IgG4相关性疾病患者就诊情况及其临床特征[J]. 北京大学学报(医学版), 2023, 55(6): 1028-1032.
[4] 冯敏,陈哲,程永静. 以十二指肠溃疡为突出表现的IgG4相关性疾病1例[J]. 北京大学学报(医学版), 2023, 55(6): 1125-1129.
[5] 于昊哲,曾唯珍,吴文雨,姚中强,冯云. 原发性干燥综合征合并甲状腺功能减退眼表状态评估[J]. 北京大学学报(医学版), 2022, 54(4): 705-711.
[6] 李志华,徐纯如,刘颖,贯华,张萌,车新艳,唐琦,黄燕波,李学松,周利群. 饮水习惯与上尿路尿路上皮癌病理特征的相关性分析[J]. 北京大学学报(医学版), 2022, 54(4): 621-627.
[7] 孟广艳,张筠肖,张渝昕,刘燕鹰. IgG4相关性疾病中枢神经系统受累的临床特点分析[J]. 北京大学学报(医学版), 2021, 53(6): 1043-1048.
[8] 郭子宁, 梁志生, 周仪, 张娜, 黄捷. 基于国际疾病分类的心血管疾病亚型的基因组学研究[J]. 北京大学学报(医学版), 2021, 53(3): 453-459.
[9] 赵磊,张洪宪,侯小飞,刘磊,陆敏,韩永,马潞林. 来氟米特联合羟苯磺酸钙治疗肾移植术后BK病毒相关性肾病[J]. 北京大学学报(医学版), 2020, 52(2): 385-389.
[10] 李胜光,张清,周惠琼. 抗中性粒细胞胞质抗体相关性血管炎的病情评估方法及其相关性[J]. 北京大学学报(医学版), 2018, 50(6): 1022-1026.
[11] 蔡士铭,燕宇,赵慧萍,武蓓,左力,王梅. 腹膜透析相关嗜酸粒细胞性腹膜炎1例报道并文献复习[J]. 北京大学学报(医学版), 2018, 50(4): 747-751.
[12] 张意兰,王智峰,陈宁. 血清IgG4在不同疾病患者中的表达[J]. 北京大学学报(医学版), 2017, 49(6): 961-964.
[13] 袁园,王苹,吴雅慧,叶晓茜,黄尚志,石冰,王科,王竹青,刘冬静,王子凡,. 中国人群细胞黏附相关基因多态性与非综合征型唇腭裂的关联研究[J]. 北京大学学报(医学版), 2016, 48(3): 403-408.
[14] 陆林, 王曦, 罗宜孝, 张肖丽, 时杰. 药物依赖戒断后心理渴求的神经机制及干预措施[J]. 北京大学学报(医学版), 2009, 41(3): 282-284.
[15] 韩济生. 疼痛、药物成瘾和神经退行性疾病最新研究进展[J]. 北京大学学报(医学版), 2009, 41(3): 249-254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 书讯[J]. 北京大学学报(医学版), 2007, 39(3): 225 -328 .
[2] 黄萍, 刘炯, 夏英杰, 仲燕莹, 陈跃国. 两种准分子激光手术治疗超高度近视的对比研究[J]. 北京大学学报(医学版), 2007, 39(5): 498 -502 .
[3] 范少光. 向王志均院士学习[J]. 北京大学学报(医学版), 2000, 32(4): 300 .
[4] 马红, 高妍, 杨建梅, 惠岩, 陈澜, 王淑凤. 人血浆瘦素水平与肥胖及血浆胰岛素水平的关系[J]. 北京大学学报(医学版), 2001, 33(6): 559 -561 .
[5] 樊志荣, 卢义侠, 李长龄. 肾病综合征大鼠肾小球血管紧张素Ⅱ受体结合的变化及机制[J]. 北京大学学报(医学版), 2001, 33(6): 565 .
[6] 范蓉, 张成飞, 高岩, 李斌斌, 王晶. 核因子-κB受体活化因子配体和骨保护素在慢性根尖周炎病损组织中的表达[J]. 北京大学学报(医学版), 2008, 40(1): 39 -42 .
[7] 章巍, 王广发, 张红, 牟向东, 金哲. 用内科胸腔镜进行滑石粉胸膜固定术治疗恶性胸腔积液27例临床分析[J]. 北京大学学报(医学版), 2008, 40(6): 600 -602 .
[8] 田清平, 冯雪茹, 庞永正, 唐朝枢, 刘梅林. 血浆皮质醇激素抑制素水平与冠心病的关系[J]. 北京大学学报(医学版), 2009, 41(5): 537 -540 .
[9] 陈磊, 张豪, 冯海兰, 张凤军. 正常受试者单侧咀嚼运动中的牙合接触模式[J]. 北京大学学报(医学版), 2009, 41(1): 90 -94 .
[10] 赵英芳, 田新霞, 杜娟, 张云岗, 刘松年, 林杰, 郑杰. 胃癌中p16INK4a和RB基因甲基化状况及其表达[J]. 北京大学学报(医学版), 2003, 35(4): 382 -385 .