北京大学学报(医学版) ›› 2018, Vol. 50 ›› Issue (1): 141-147. doi: 10.3969/j.issn.1671-167X.2018.01.024

• 论著 • 上一篇    下一篇

舌侧矫治器关闭间隙上前牙牙周膜应力变化的三维有限元分析

柳大为1,李晶1,郭亮2,荣起国2,周彦恒1△   

  1. (1. 北京大学口腔医学院·口腔医院,正畸科口腔数字化医疗技术和材料国家工程实验室口腔数字医学北京市重点实验室, 北京100081; 2. 北京大学工学院生物医学工程系, 北京100871)
  • 出版日期:2018-02-18 发布日期:2018-02-18
  • 通讯作者: 周彦恒 E-mail:yanhengzhou@vip.sina.com
  • 基金资助:
    北京大学口腔医学院青年基金(PKUSS20110203)和北京大学口腔医学院新技术新疗法项目(PKUSSNCT-11A07)资助

Stress change of periodontal ligament of the anterior teeth at the stage of space closure in lingual appliances: a 3-dimensional finite element analysis

LIU Da-wei1, LI Jing1, GUO Liang2, RONG Qi-guo2, ZHOU Yan-heng1△   

  1. (1. Department of Orthodontics,Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081,China; 2. Department of Biomedical Engineering,College of Engineering,Peking University,Beijing 100871,China)
  • Online:2018-02-18 Published:2018-02-18
  • Contact: ZHOU Yan-heng E-mail:yanhengzhou@vip.sina.com
  • Supported by:
    Supported by Young Scientists Fund of PKUSS (PKUSS20110203) and New Clinical Technology Fund of PKUSS (PKUSSNCT-11A07)

摘要: 目的:利用已有的舌侧矫治三维有限元模型并进行加力运算,分析个体化舌侧矫治滑动法关闭上颌拔牙间隙阶段,在颊、腭侧不同力值、不同加力组合方式加力时,上前牙的牙周膜应力分布规律,指导临床应用。方法:建立舌侧矫治三维有限元模型,在ANSYS 11.0软件中分别模拟:(1)上颌第二磨牙作为支抗牙进行单独颊侧加力(力值0.75 N、1.00 N、1.50 N);(2)单独腭侧加力(力值0.75 N、1.00 N、1.50 N);(3)颊、腭侧同时加力(颊侧加力1.00 N+腭侧加力0.50 N、颊侧加力0.75 N+腭侧加力 0.75 N、颊侧加力0.50 N+腭侧加力1.00 N),分析3种加力方式下上前牙牙周膜的最大主应力、最小主应力和von Mises应力的峰值及分布。结果:(1)单纯颊侧加力时(0.75 N、1.00 N、1.50 N)最大主应力:初始,在侧切牙牙周膜唇侧颈部及尖牙牙周膜腭侧及远中颈部均受压应力,随着加力增大,压应力值及牙周膜受压应力范围增大。最小主应力:初始,在侧切牙牙周膜腭侧颈部及尖牙近中颈部受拉应力,随着加力增大,拉应力值及牙周膜受拉应力范围增大,在中切牙的近、远中颈部牙周膜也出现拉应力区。von Mises应力:初始,牙周膜受应力区集中体现的部位为侧切牙唇、腭侧颈部及尖牙远中颈部,随着加力增大,应力值及牙周膜受力范围向根方扩大,最终,尖牙近中颈部牙周膜也出现应力集中区。(2)单纯腭侧加力(0.75 N、1.00 N、1.50 N)最大主应力:初始,尖牙牙周膜远中偏腭侧颈部,及侧切牙远中偏颊侧和腭侧颈部的牙周膜受压应力,随着加力增大,压应力值及牙周膜受压应力范围增大。最小主应力:初始,侧切牙远中邻面颈部及尖牙近中邻面颈部受拉应力,随着加力增大,拉应力值及牙周膜受拉应力范围增大。von Mises应力:初始,牙周膜受应力区集中于尖牙腭侧及近远中邻面偏腭侧的颈部,随着加力增大,应力值及牙周膜受力范围增大,最终在尖牙牙周膜颈部腭侧远中处出现了应力集中区。(3)颊腭侧同时加力时:最大主应力:压应力一直应力集中于尖牙远中偏腭侧颈部牙周膜。最小主应力:拉应力的应力集中区在颊侧加力大于腭侧加力时为侧切牙腭侧颈部牙周膜,随腭侧加力的增大,拉应力应力集中区转移到尖牙牙周膜的近中颈部。von Mises应力:颊腭侧同时加力,牙周膜所受的综合应力较单纯颊(腭)侧加力小。结论:单纯颊侧加力关闭拔牙间隙时,侧切牙及尖牙牙周膜为主要应力集中区,应力大小和范围随施力增大而增大;单纯腭侧加力关闭拔牙间隙时,尖牙牙周膜为主要应力集中区,当力值增大过程中,应力大小和范围增大;采用颊、腭侧不同加力方式组合,压应力的应力集中点均在尖牙远中牙周膜区域,拉应力的应力集中区颊侧加力大于腭侧加力时出现在侧切牙腭侧颈部,随腭侧加力力值增大转移到尖牙近中;综合应力分布情况下颊侧加力1.00 N+腭侧加力0.50 N时,牙周膜应力分布更为均匀,同时应力水平最小。

关键词: 舌侧正畸, 牙周膜应力, 三维有限元分析

Abstract: Objective:To analyze the stress distribution in the periodontal ligament (PDL) under different loading conditions at the stage of space closure by 3D finite element model of customized lingual appliances. Methods: The 3D finite element model was used in ANSYS 11.0 to analyze the stress distribution in the PDL under the following loading conditions: (1) buccal sliding mechanics (0.75 N,1.00 N,1.50 N), (2) palatal sliding mechanics (0.75 N,1.00 N,1.50 N), (3) palatalbuccal combined sliding mechanics (buccal 1.00 N + palatal 0.50 N, buccal 0.75 N + palatal 0.75 N, buccal 0.50 N+ palatal 1.00 N). The maximum principal stress, minimum principal stress and von Mises stress were evaluated. Results: (1) buccal sliding mechanics(0.75 N,1.00 N,1.50 N): maximum principal stress: at the initial of loading, maximum principal stress, which was the compressed stress, distributed in labial PDL of cervix of lateral incisor, and palatal distal PDL of cervix of canine. With increasing loa-ding, the magnitude and range of the stress was increased. Minimum principal stress: at the initial of loading, minimum principal stress which was tonsil stress, distributed in palatal PDL of cervix of lateral incisor and mesial PDL of cervix of canine. With increasing loading, the magnitude and range of minimum principal stress was increased. The area of minimum principal stress appeared in distal and mesial PDL of cervix of central incisor. von Mises stress:it distributed in labial and palatal PDL of cervix of la-teral incisor and distal PDL of cervix of canine initially. With increasing loading, the magnitude and range of stress was increased towards the direction of root. Finally, there was stress concentration area at mesial PDL of cervix of canine. (2) palatal sliding mechanics(0.75 N,1.00 N,1.50 N): maximum principal stress: at the initial of loading, maximum principal stress which was the compressed stress, distributed in palatal and distal PDL of cervix of canine, and distalbuccal and palatal PDL of cervix of late-ral incisor. With increasing loading, the magnitude and range of the stress was increased. Minimum principal stress: at the initial of loading, minimum principal stress which was tonsil stress, distributed in distalinterproximal PDL of cervix of lateral incisor and mesial-interproximal PDL of cervix of canine. With increasing loading, the magnitude and range of the stress was increased.von Mises stress: von Mises stress distributed in palatal and interproximal PDL of cervix of canine. With increasing loading, the magnitude and range of stress was increased. Finally, von Mises stress distributing area appeared at distalpalatal PDL of cervix of canine. (3) palatalbuccal combined sliding mechanics: maximum principal stress: maximum principal stress still distributed in distal-palatal PDL of cervix of canine. Minimum principal stress: minimum principal stress distributed in palatal PDL of cervix of lateral incisor when buccal force was more than palatal force. As palatal force increased, the stress concentrating area transferred to mesial PDL of cervix of canine.von Mises stress: it was lower and more well-distributed in palatal-buccal combined sliding mechanics than palatal or buccal sliding mechanics. Conclusion: Using buccal sliding mechanics,stress majorly distributed in PDL of lateral incisor and canine, and magnitude and range of stress increased with the increase of loading; Using palatal sliding mechanics,stress majorly distributed in PDL of canine, and magnitude and range of stress increased with the increase of loading; With palatal-buccal combined sliding mechanics, the maximum principal stress distributed in the distal PDL of canine. Minimum principal stress distributed in palatal PDL of cervix of lateral incisor when buccal force was more than palatal force. As palatal force was increasing, the minimum principal stress distributing area shifted to mesial PDL of cervix of canine. When using 1.00 N buccal force and 0.50 N palatal force, the von Mises stress distributed uniformly in PDL and minimal stress appeared.

Key words: Lingual orthodontics, Stress of periodontal ligament, 3 Dimensional finite element analysis

中图分类号: 

  • R783.5
[1] 欧蒙恩,丁云,唐卫峰,周永胜. 基台边缘-牙冠的平台转移结构中粘接剂流动的三维有限元分析[J]. 北京大学学报(医学版), 2023, 55(3): 548-552.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!