北京大学学报(医学版) ›› 2018, Vol. 50 ›› Issue (1): 154-159. doi: 10.3969/j.issn.1671-167X.2018.01.026

• 论著 • 上一篇    下一篇

磨牙非中性关系与虚拟环境下拼对终末咬合精度

吴灵,刘筱菁,李自力△,王兴   

  1. (北京大学口腔医学院·口腔医院,口腔颌面外科口腔数字化医疗技术和材料国家工程实验室口腔数字医学北京市重点实验室, 北京100081)
  • 出版日期:2018-02-18 发布日期:2018-02-18
  • 通讯作者: 李自力 E-mail: kglzl@sina.com
  • 基金资助:
     国家自然科学基金(81400569)、首都卫生发展科研专项(2016-1-4103)和北京市科学技术计划项目(Z161100000116053)资助

Evaluation of accuracy of virtual occlusal definition in Angle class Ⅰ molar relationship

WU Ling, LIU Xiao-jing, LI Zi-li△, WANG Xing   

  1. (Department of Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China)
  • Online:2018-02-18 Published:2018-02-18
  • Contact: LI Zi-li E-mail: kglzl@sina.com
  • Supported by:
    Supported by the National Natural Science Foundation of China (81400569), the Capital Health Researth and Development of Special (2016-1-4103) and Beijing Municipal Science & Technology Commission (Z161100000116053)

摘要: 目的:检测磨牙非中性关系时虚拟咬合拼对的精度及临床可行性。方法:选取已完成正颌术前正畸、拼对终末咬合关系良好的寄存正颌患者牙列模型20副,其中10副术前正畸时上颌拔除左右各一颗双尖牙,术后拼对咬合为磨牙非中性关系(拔牙组), 另10副未进行减数拔牙,术后拼对咬合为中性磨牙关系(非拔牙组)。手工拼对石膏模型确立的终末咬合关系作为评价拔牙组、非拔牙组误差的实测值。进行虚拟终末咬合关系确立的数字流程为:结构光扫描仪分别获取上下牙列的三维数据,导入 3Shape软件,在虚拟环境下整体移动上颌牙列确立终末咬合关系。得到的测试上颌模型和手工拼对上颌模型以下颌模型为标准图形配准,采用直线距离法分析上颌牙列每颗牙齿的实验位置与手工拼对位置的差异,计算误差值。结果:拔牙组虚拟咬合拼对的全牙列平均误差为(0.60±0.36) mm,大于非拔牙组的(0.51±0.18) mm,差异有统计学意义(P<0.05);拔牙组误差与1 mm相比差异无统计学意义(P>0.05),非拔牙组误差小于1 mm,差异有统计学意义(P<0.05)。结论:磨牙非中性关系虚拟咬合拼对的误差值高于磨牙中性关系虚拟咬合拼对的误差值,但其精度满足临床需求,具备应用价值。

关键词: 计算机辅助手术模拟, 正颌外科, 虚拟终末咬合, 中性磨牙关系

Abstract: Objective: To evaluate the accuracy of virtual occlusal definition in non-Angle class Ⅰ molar relationship, and to evaluate the clinical feasibility. Methods: Twenty pairs of models of orthognathic patients were included in this study. The inclusion criteria were: (1) finished with pre-surgical orthodontic treatment and (2) stable final occlusion. The exclusion criteria were: (1) existence of distorted teeth, (2) needs for segmentation, (3) defect of dentition except for orthodontic extraction ones, and (4) existence of tooth space. The tooth-extracted test group included 10 models with two premolars extracted during preoperative orthodontic treatment. Their molar relationships were not Angle class Ⅰ relationship. The non-tooth-extracted test group included another 10 models without teeth extracted, therefore their molar relationships were Angle class Ⅰ. To define the final occlusion in virtual environment, two steps were included: (1) The morphology data of upper and lower dentition were digitalized by surface scanner (Smart Optics/Activity 102; Model-Tray GmbH, Hamburg, Germany); (2) the virtual relationships were defined using 3Shape software. The control standard of final occlusion was manually defined using gypsum models and then digitalized by surface scanner. The final occlusion of test group and control standard were overlapped according to lower dentition morphology. Errors were evaluated by calculating the distance between the corresponding reference points of testing group and control standard locations. Results: The overall errors for upper dentition between test group and control standard location were (0.51±0.18) mm in non-tooth-extracted test group and (0.60±0.36) mm in tooth-extracted test group. The errors were significantly different between these two test groups (P<0.05). However, in both test groups, the errors of each tooth in a single dentition does not differ from one another. There was no significant difference between errors in tooth-extracted test group and 1 mm (P>0.05); and the accuracy of non-tooth-extracted group was significantly smaller than 1 mm (P<0.05). Conclusion: The error of virtual occlusal definition of none class I molar relationship is higher than that of class I relationship, with an accuracy of 1 mm. However, its accuracy is still feasible for clinical application.

Key words: Computer-assisted surgical simulation, Orthognathic surgery, Virtual occlusion definition, Angle class Ⅰ molar relationship

中图分类号: 

  • R782.2
[1] 蔡安东,王晓霞,周文娟,柳忠豪. 下颌前突畸形患者上颌骨及髁突虚拟位置与术后现实位置的比较[J]. 北京大学学报(医学版), 2024, 56(1): 74-80.
[2] 徐心雨,吴灵,宋凤岐,李自力,张益,刘筱菁. 基于下颌运动轨迹的正颌外科术中下颌骨髁突定位方法及初步精度验证[J]. 北京大学学报(医学版), 2024, 56(1): 57-65.
[3] 张雯,刘筱菁,李自力,张益. 基于解剖标志的鼻翼基底缩窄缝合术对正颌患者术后鼻唇部形态的影响[J]. 北京大学学报(医学版), 2023, 55(4): 736-742.
[4] 孙现涛,何伟,刘筱菁,李自力,王兴. Delaire头影测量分析法预测正颌手术患者上颌及颏部理想矢状向位置的可行性评估[J]. 北京大学学报(医学版), 2020, 52(1): 90-96.
[5] 王哲,朱榴宁,周琳,伊彪. 锥形束CT融合三维面像评估正颌术后软硬组织的变化[J]. 北京大学学报(医学版), 2016, 48(3): 544-549.
[6] 何颖, 郭传瑸, 邓旭亮, 王兴, 王晓霞. 北方正常人群颅颌面三维比例测量及面部对称性分析[J]. 北京大学学报(医学版), 2015, 47(4): 708-713.
[7] 陈硕, 刘筱菁, 李自力, 梁成, 王晓霞, 傅开元, 伊彪. 下颌后缩畸形患者正颌外科术后髁突改建的三维影像评价[J]. 北京大学学报(医学版), 2015, 47(4): 703-707.
[8] 刘筱菁, 李倩倩, 田凯月, 王晓霞, 张益, 李自力. 陀螺仪记录转移自然头位系统的建立及其精度检测[J]. 北京大学学报(医学版), 2014, 46(1): 86-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!