北京大学学报(医学版) ›› 2019, Vol. 51 ›› Issue (2): 374-377. doi: 10.19723/j.issn.1671-167X.2019.02.035

• 综述 • 上一篇    

皮肌炎/多肌炎表观遗传学标志物的研究进展

杨伊莹,左晓霞,朱红林,刘思佳()   

  1. 中南大学湘雅医院风湿免疫科,长沙 410008
  • 收稿日期:2018-07-03 出版日期:2019-04-18 发布日期:2019-04-26
  • 通讯作者: 刘思佳 E-mail:celialiu@csu.edu.cn

Advances in epigenetic markers of dermatomyositis/polymyositis

Yi-ying YANG,Xiao-xia ZUO,Hong-lin ZHU,Si-jia LIU()   

  1. Department of Rheumatology and Clinical Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
  • Received:2018-07-03 Online:2019-04-18 Published:2019-04-26
  • Contact: Si-jia LIU E-mail:celialiu@csu.edu.cn

RICH HTML

  

关键词: 皮肌炎, 多肌炎, 表观遗传学, 生物学标记

Abstract:

Idiopathic inflammatory myopathy (IIM) is a rare group of autoimmune diseases, characte-rized by chronic muscle weakness, muscle fatigue and infiltration of single nuclear cells in skeletal muscle. Its subtypes include dermatomyositis (DM), polymyositis (PM), inclusion body myositis (IBM) and immune-mediated necrotizing myositis (IMNM), and the most common subtypes are DM and PM. PM is an autoimmune disease mainly manifested by muscle damage. When the skin is involved, it is called DM. The incidence of IIM was relatively low, which was 1.16-19 per million people/year, but the mortality was high and the prognosis was poor. The pathogenesis of IIM is still unclear. Previous stu-dies suggest that both immune and non-immune mechanisms are involved in its pathogenesis, especially cellular and humoral immunity. In recent years, researchers have conducted a number of studies on the pathogenesis of IIM, especially in the study of DM/PM with the application of high-throughput biome-trics. Epigenetics is a discipline that refers to the genetic phenomena of DNA methylation spectrum, chromatin structure state and gene expression spectrum transferred between cells without any changes in DNA sequence, including DNA methylation, chromatin modification and non-coding RNA changes. A large number of studies have shown that epigenetic modification plays an important role in many diseases, especially in cancer. Recent studies have also found a series of epigenetic markers related to the occurrence and development of DM/PM, mainly in the aspect of non-coding RNA changes, such as miR-10a, miR-206, etc.. And there has also been some research on DNA methylation. However, no studies have been reported on whether chromatin modification is involved in the pathogenesis of DM/PM. The pathogenesis of DM/PM is complex and diverse. With the development of research, certain microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) may become biological markers for the early diagnosis of DM/PM. Therefore, this paper mainly expounds the research progress of the biomarkers of DM/PM from the aspect of epigenetics.

Key words: Dermatomyositis, Polymyositis, Epigenomics, Biological markers

中图分类号: 

  • R593.26
[1] Firestein GS, Budd RC, Gabriel SE, 等. 凯利风湿病学[M]. 8版. 栗占国, 唐福林, 左晓霞, 等译. 北京: 北京大学医学出版社, 2011.
[2] Dimachkie MM, Barohn RJ, Amato A . Idiopathic inflammatory myopathies[J]. Neurol Clin, 2014,32(3):595-628.
doi: 10.1016/j.ncl.2014.04.007
[3] Meyer A, Meyer N, Schaeffer M , et al. Incidence and prevalence of inflammatory myopathies: a systematic review[J]. Rheumato-logy (Oxford), 2015,54(1):50-63.
doi: 10.1093/rheumatology/keu289
[4] Ernste FC, Reed AM . Idiopathic inflammatory myopathies: current trends in pathogenesis, clinical features, and up-to-date treatment recommendations[J]. Mayo Clin Proc, 2013,88(1):83-105.
doi: 10.1016/j.mayocp.2012.10.017
[5] Venalis P, Lundberg IE . Immune mechanisms in polymyositis and dermatomyositis and potential targets for therapy[J]. Rheumatology (Oxford), 2014,53(3):397-405.
doi: 10.1093/rheumatology/ket279
[6] Lu Gan, O’Hanlon TP, Gordon AS , et al. Twins discordant for myositis and systemic lupus erythematosus show markedly enriched autoantibodies in the affected twin supporting environmental in-fluences in pathogenesis[J]. BMC Musculoskelet Disord, 2014,15(1):1-11.
doi: 10.1186/1471-2474-15-1
[7] 崔宏伟, 苏秀兰 . 表观遗传学研究进展[J]. 中国医药导报, 2014(19):152-155.
[8] Boissonnas CC, Jouannet P, Jammes H . Epigenetic disorders and male subfertility[J]. Fertil Steril, 2013,99(3):624-631.
doi: 10.1016/j.fertnstert.2013.01.124
[9] Castelo-Branco G, Bannister AJ . The epigenetics of cancer from noncoding RNAs to chromatin and beyond[J]. Brief Funct Genomics, 2013,12(3):161-163.
doi: 10.1093/bfgp/elt020
[10] Toriello HV . What is new in the field of genetics[J]. Adolesc Med State Art Rev, 2013,24(1):43-56.
[11] Carrió E, Suelves M . DNA methylation dynamics in muscle deve-lopment and disease[J]. Frontiers in Aging Neuroscience, 2015(7):19.
[12] Wang M, Xie HH, Shrestha S , et al. Methylation alterations of WT1 and homeobox genes in inflamed muscle biopsy samples from patients with untreated juvenile dermatomyositis suggest self-renewal capacity[J]. Arthritis Rheum, 2012,64(10):3478-3485.
doi: 10.1002/art.34573
[13] Gao SM, Zuo XX, Liu D , et al. The roles of neutrophil serine proteinases in idiopathic inflammatory myopathies[J]. Arthritis Res Ther, 2018,20(1):134.
doi: 10.1186/s13075-018-1632-x
[14] 夏天, 肖丙秀, 郭俊明 . 长链非编码RNA的作用机制及其研究方法[J]. 遗传, 2013,35(3):269-280.
doi: 10.3724/SP.J.1005.2013.00269
[15] 陈学斌, 王国春 . miRNA在特发性炎性肌病中的作用[J]. 实用医院临床杂志, 2015(5):17-22.
[16] Xu D, Huang CC, Kachaochana A , et al. MicroRNA-10a regulation of proinflammatory mediators: an important component of untreated juvenile dermatomyositis[J]. J Rheumatol, 2016,43(1):161-168.
doi: 10.3899/jrheum.141474
[17] Chevrel G, Page G, Granet C , et al. Interleukin-17 increases the effects of IL-1β on muscle cells: arguments for the role of T cells in the pathogenesis of myositis[J]. J Neuroimmunol, 2003,137(1):125-133.
doi: 10.1016/S0165-5728(03)00032-8
[18] Lebson L, Gocke A, Rosenzweig J , et al. Cutting edge: the transcription factor Kruppel-like factor 4 regulates the differentiation of T17 cells independently of RORγt[J]. J Immunol, 2011,185(12):7161-7164.
[19] An J, Golech S, Klaewsongkram J , et al. Kruppel-like factor 4 (KLF4) directly regulates proliferation in thymocyte development and IL-17 expression during T17 differentiation[J]. FASEB J, 2011,25(10):3634-3645.
doi: 10.1096/fj.11-186924
[20] Parasramka MA, Dashwood WM, Wang R , et al. A role for low-abundance miRNAs in colon cancer: the miR-206/Kruppel-like factor 4 (KLF4) axis[J]. Clin Epigenetics, 2012,4(1):16-26.
doi: 10.1186/1868-7083-4-16
[21] Tang XY, Tian XY, Zhang Y , et al. Correlation between the frequency of Th17 cell and the expression of microRNA-206 in patients with dermatomyositis[J]. Clin Dev Immunol, 2013,2013:345347.
[22] Misunova M, Salinas-Riester G, Luthin S , et al. Microarray ana-lysis of circulating micro RNAs in the serum of patients with polymyositis and dermatomyositis reveals a distinct disease expression profile and is associated with disease activity[J]. Clin Exp Rheumatol, 2016,34(1):17-24.
[23] Georgantas RW, Streicher K, Greenberg SA , et al. Inhibition of myogenic microRNAs 1, 133, and 206 by inflammatory cytokines links inflammation and muscle degeneration in adult inflammatory myopathies[J]. Arthritis Rheumatol, 2014,66(4):1022-1033.
doi: 10.1002/art.38292
[24] Arahata K, Engel AG . Monoclonal antibody analysis of mononuclear cells in myopathies I: quantitation of subsets according to diagnosis and sites of accumulation and demonstration and counts of muscle fibers invaded by T cells[J]. Ann Neurol, 1984,16(2):193-208.
doi: 10.1002/(ISSN)1531-8249
[25] Greenberg SA, Bradshaw EM, Pinkus JL , et al. Plasma cells in muscle in inclusion body myositis and polymyositis[J]. Neurology, 2005,65(11):1782-1787.
doi: 10.1212/01.wnl.0000187124.92826.20
[26] Greenberg SA, Pinkus GS, Amato AA , et al. Myeloid dendritic cells in inclusion-body myositis and polymyositis[J]. Muscle Nerve, 2007,35(1):17-23.
doi: 10.1002/(ISSN)1097-4598
[27] Zhu W, Streicher K, Shen N , et al. Genomic signatures characterize leukocyte infiltration in myositis muscles[J]. BMC Med Genomics, 2012,5(1):53-64.
doi: 10.1186/1755-8794-5-53
[28] Oshikawa Y, Jinnin M, Makino T , et al. Decreased miR-7 expression in the skin and sera of patients with dermatomyositis[J]. Acta Derm Venereol, 2013,93(3):273-276.
doi: 10.2340/00015555-1459
[29] Inoue K, Jinnin M, Yamane K , et al. Down-regulation of miR-223 contributes to the formation of Gottron’s papules in dermatomyositis via the induction of PKC varepsilon[J]. Eur J Dermatol, 2013,23(2):160-167.
[30] Hirai T, Ikeda K, Tsushima H , et al. Circulating plasma micro-RNA profiling in patients with polymyositis/dermatomyositis before and after treatment: miRNA may be associated with polymyositis/dermatomyositis[J]. Inflamm Regen, 2018,38:1.
doi: 10.1186/s41232-017-0058-1
[31] Zhou B, Zuo XX, Li YS , et al. Integration of microRNA and mRNA expression profiles in the skin of systemic sclerosis patients[J]. Sci Rep, 2017,7:42899.
doi: 10.1038/srep42899
[32] Simionescu-Bankston A, Kumar A . Noncoding RNAs in the regulation of skeletal muscle biology in health and disease[J]. J Mol Med, 2016,94(8):853-866.
doi: 10.1007/s00109-016-1443-y
[33] Butchart LC, Fox A, Shavlakadze T , et al. The long and short of non-coding RNAs during post-natal growth and diferentiation of skeletal muscles: Focus on lncRNA and miRNAs[J]. Differentiation, 2016,92(5):237-248.
doi: 10.1016/j.diff.2016.05.003
[34] Rinn JL, Chang HY . Genome regulation by long noncoding RNAs[J]. Annu Rev Biochem, 2012,81(1):145-166.
doi: 10.1146/annurev-biochem-051410-092902
[35] Wapinski O, Chang HY . Long noncoding RNAs and human di-sease[J]. Trends Cell Biol, 2011,21(6):354-361.
doi: 10.1016/j.tcb.2011.04.001
[36] Peng QL, Zhang YM, Yang HB , et al. Transcriptomic profiling of long non-coding RNAs in dermatomyositis by microarray analysis[J]. Sci Rep, 2016,6:32818.
doi: 10.1038/srep32818
[37] Hamann PD, Roux BT, Heward JA , et al. Transcriptional profiling identifies differential expression of long non-coding RNAs in Jo-1 associated and inclusion body myositis[J]. Sci Rep, 2017,7:8024.
doi: 10.1038/s41598-017-08603-9
[38] Gao SM, Luo H, Zhang HL , et al. Using multi-omics methods to understand dermatomyositis/polymyositis[J]. Autoimmun Rev, 2017,16(10):1044-1048.
doi: 10.1016/j.autrev.2017.07.021
[1] 邢晓燕,张筠肖,朱冯赟智,王一帆,周新尧,李玉慧. 皮肌炎合并巨噬细胞活化综合征5例[J]. 北京大学学报(医学版), 2022, 54(6): 1214-1218.
[2] 张朴丽,杨红霞,张立宁,葛勇鹏,彭清林,王国春,卢昕. 血清YKL-40在诊断抗黑色素瘤分化相关基因5阳性皮肌炎合并严重肺损伤中的价值[J]. 北京大学学报(医学版), 2021, 53(6): 1055-1060.
[3] 吴燕芳,高飞,林滇恬,陈志涵,林禾. 托法替布联合治疗抗MDA5抗体阳性的无肌病皮肌炎并发快速进展型间质性肺病5例临床分析[J]. 北京大学学报(医学版), 2021, 53(5): 1012-1016.
[4] 甘雨舟,李玉慧,张丽华,马琳,何文雯,金月波,安媛,栗占国,叶华. 临床无肌病性皮肌炎与皮肌炎临床及免疫学特征比较[J]. 北京大学学报(医学版), 2020, 52(6): 1001-1008.
[5] 徐婧,徐静,李鹤,唐杰,舒建龙,张婧,石连杰,李胜光. 皮肌炎合并IgA血管炎1例[J]. 北京大学学报(医学版), 2019, 51(6): 1173-1177.
[6] 杨娇,姚海红,莫晓冬,罗增,白玛央金. 我国西藏地区(高原)系统性红斑狼疮患者临床及免疫学特征分析[J]. 北京大学学报(医学版), 2018, 50(6): 1004-1008.
[7] 余建峰, 金月波, 何菁, 安媛, 栗占国. 皮肌炎继发干燥综合征伴肺间质病变的血清人Ⅱ型肺泡细胞表面抗原变化1例[J]. 北京大学学报(医学版), 2017, 49(5): 910-914.
[8] 巩蓓, 胡慧慧, 张曼. 载脂蛋白A-Ⅰ在8种不同组织学分型肾肿瘤中的表达[J]. 北京大学学报(医学版), 2015, 47(1): 155-159.
[9] 刘爽, 安媛, 贾园, 栗占国. 类风湿关节炎合并无肌病性皮肌炎伴多重肺损伤1例[J]. 北京大学学报(医学版), 2014, 46(5): 805-808.
[10] 姚艺桑, 高凌, 李玉玲, 马少丽, 吴子媺, 谈宁芝, 吴建勇, 倪陆群, 朱佳石. 丰度加权法分析冬虫夏草RAPD多态性高度差异及动态变化[J]. 北京大学学报(医学版), 2014, 46(4): 618-628.
[11] 刘媛, 王永福, 王凯丽, 吕凤凤. 免疫球蛋白G型抗环瓜氨酸肽抗体在原发性干燥综合征患者血清中的检出率及其意义[J]. 北京大学学报(医学版), 2014, 46(3): 478-482.
[12] 辛钟成, 王林,林桂亭, 郭应禄. 间充质干细胞的细胞标志物与示踪标记物[J]. 北京大学学报(医学版), 2013, 45(4): 514-.
[13] 徐菁玲, 孟焕新, 李峥, 李凤云, 张琳. 牙周基础治疗对2型糖尿病伴慢性牙周炎患者血糖代谢指标及血清生化指标的影响[J]. 北京大学学报(医学版), 2013, 45(1): 27-32.
[14] 陈芳, 舒晓明, 王冬雪, 王国春, 卢昕. 多发性肌炎及皮肌炎患者血清单核细胞趋化蛋白-1的测定及临床意义[J]. 北京大学学报(医学版), 2012, 44(2): 204-208.
[15] 姚海红, 李玉慧, 张学武, 栗占国. 皮肌炎合并甲状腺功能异常的临床及免疫学特征分析[J]. 北京大学学报(医学版), 2011, 43(2): 209-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!