北京大学学报(医学版) ›› 2020, Vol. 52 ›› Issue (2): 204-206. doi: 10.19723/j.issn.1671-167X.2020.02.002
中图分类号:
[1] | Cruz-Ramos M, Garcia-Foncillas J . CAR-T cell and personalized medicine[J]. Adv Exp Med Biol, 2019(1168):131-145. |
[2] | Gorabi AM, Hajighasemi S, Sathyapalan T , et al. Cell transfer-based immunotherapies in cancer: A review[J]. IUBMB Life, 72(4):790-800. |
[3] | 钱其军, 吴孟超 . 肿瘤过继细胞治疗----老故事新演绎[J]. 中国肿瘤生物治疗杂志, 2011,18(1):1-6. |
[4] | Wculek SK, Cueto FJ, Mujal AM , et al. Dendritic cells in cancer immunology and immunotherapy[J]. Nat Rev Immunol, 2020,20(1):7-24. |
[5] | Jiang N, Qiao G, Wang X , et al. Dendritic cell/cytokine-induced killer cell immunotherapy combined with S-1 in patients with advanced pancrea-tic cancer: A prospective study[J]. Clin Cancer Res, 2017,23(17):5066-5073. |
[6] | Wang X, Ren J, Zhang J , et al. Prospective study of cyclophosphamide, thiotepa, carboplatin combined with adoptive DC-CIK followed by metronomic cyclophosphamide therapy as salvage treatment for triple negative metastatic breast cancers patients (aged <45)[J]. Clin Transl Oncol, 2016,18(1):82-87. |
[7] | Wang S, Wang X, Zhou X , et al.DC-CIK as a widely applicable cancer immunotherapy[J/OL].Expert Opin Biol Ther, ( 2020 -02-13). doi: 10.1080/14712598.2020.1728250. |
[8] | Routy B, Gopalakrishnan V, Daillère R , et al. The gut microbiota influences anticancer immunosurveillance and general health[J]. Nat Rev Clin Oncol, 2018,15(6):382-396. |
[9] | Goubet AG, Daillère R, Routy B , et al. The impact of the intestinal microbiota in therapeutic responses against cancer[J]. C R Biol, 2018,341(5):284-289. |
[10] | Havel JJ, Chowell D, Chan TA . The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy[J]. Nat Rev Cancer, 2019,19(3):133-150. |
[11] | Sanmamed MF, Chen L . A paradigm shift in cancer immunotherapy: From enhancement to normalization[J]. Cell, 2018,175(2):313-326. |
[12] | Li XV, Leonardi I, Iliev ID . Gut mycobiota in immunity and inflammatory disease[J]. Immunity, 2019,50(6):1365-1379. |
[13] | Kamada N, Seo SU, Chen GY , et al. Role of the gut microbiota in immunity and inflammatory disease[J]. Nat Rev Immunol, 2013,13(5):321-335. |
[14] | Round JL, Lee SM, Li J , et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota[J]. Science, 2011,332(6032):974-977. |
[15] | Kim M, Galan C, Hill AA , et al. Critical role for the microbiota in CX3CR1 + intestinal mononuclear phagocyte regulation of intestinal T cell responses [J]. Immunity, 2018,49(1):151-163. |
[16] | Fitzgibbon G, Mills KHG . The microbiota and immune-mediated diseases: Opportunities for therapeutic intervention[J]. Eur J Immunol, 2020,50(3):326-337. |
[17] | Karin M, Jobin C, Balkwill F . Chemotherapy, immunity and microbiota: a new triumvirate?[J]. Nat Med, 2014,20(2):126-127. |
[18] | Ganal SC, Sanos SL, Kallfass C , et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota[J]. Immunity, 2012,37(1):171-186. |
[19] | Abid MB, Shah NN, Maatman TC , et al. Gut microbiome and CAR-T therapy[J]. Exp Hematol Oncol, 2019(8):31. |
[20] | Paulos CM, Wrzesinski C, Kaiser A , et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8 + T cells via TLR4 signaling [J]. J Clin Invest, 2007,117(8):2197-2204. |
[21] | Dudley ME, Yang JC, Sherry R , et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens[J]. J Clin Oncol, 2008,26(32):5233-5239. |
[22] | Uribe-Herranz M, Bittinger K, Rafail S , et al. Gut microbiota modulates adoptive cell therapy via CD8α dendritic cells and IL-12[J]. JCI Insight, 2018,3(4):e94952. |
[23] | Tanoue T, Morita S, Plichta DR , et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity[J]. Nature, 2019,565(7741):600-605. |
[24] | Duell J, Dittrich M, Bedke T , et al. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL[J]. Leukemia, 2017,31(10):2181-2190. |
[25] | Otoshi T, Nagano T, Tachihara M , et al. Possible biomarkers for cancer immunotherapy[J]. Cancers (Basel), 2019,11(7):935. |
[1] | 李志存, 吴天俣, 梁磊, 范宇, 孟一森, 张骞. 穿刺活检单针阳性前列腺癌术后病理升级的危险因素分析及列线图模型构建[J]. 北京大学学报(医学版), 2024, 56(5): 896-901. |
[2] | 刘家骏, 刘国康, 朱玉虎. 免疫相关性重症肺炎1例[J]. 北京大学学报(医学版), 2024, 56(5): 932-937. |
[3] | 黄教悌,胡菁,韩博. 治疗相关神经内分泌前列腺癌机制研究与靶向治疗新进展[J]. 北京大学学报(医学版), 2024, 56(4): 557-561. |
[4] | 田宇轩,阮明健,刘毅,李德润,吴静云,沈棋,范宇,金杰. 双参数MRI改良PI-RADS评分4分和5分病灶的最大径对临床有意义前列腺癌的预测效果[J]. 北京大学学报(医学版), 2024, 56(4): 567-574. |
[5] | 姚凯烽,阮明健,李德润,田宇轩,陈宇珂,范宇,刘毅. 靶向穿刺联合区域系统穿刺对PI-RADS 4~5分患者的前列腺癌诊断效能[J]. 北京大学学报(医学版), 2024, 56(4): 575-581. |
[6] | 欧俊永,倪坤明,马潞林,王国良,颜野,杨斌,李庚午,宋昊东,陆敏,叶剑飞,张树栋. 肌层浸润性膀胱癌合并中高危前列腺癌患者的预后因素[J]. 北京大学学报(医学版), 2024, 56(4): 582-588. |
[7] | 王滨帅,邱敏,张前进,田茂锋,刘磊,王国良,陆敏,田晓军,张树栋. 6例肾尤文肉瘤伴静脉瘤栓的诊治[J]. 北京大学学报(医学版), 2024, 56(4): 636-639. |
[8] | 虞乐,邓绍晖,张帆,颜野,叶剑飞,张树栋. 具有低度恶性潜能的多房囊性肾肿瘤的临床病理特征及预后[J]. 北京大学学报(医学版), 2024, 56(4): 661-666. |
[9] | 舒帆,郝一昌,张展奕,邓绍晖,张洪宪,刘磊,王国良,田晓军,赵磊,马潞林,张树栋. 肾部分切除术治疗囊性肾癌的功能学和肿瘤学结果:单中心回顾性研究[J]. 北京大学学报(医学版), 2024, 56(4): 667-672. |
[10] | 方杨毅,李强,黄志高,陆敏,洪锴,张树栋. 睾丸鞘膜高分化乳头状间皮肿瘤1例[J]. 北京大学学报(医学版), 2024, 56(4): 741-744. |
[11] | 柴晓东,孙子文,李海爽,朱靓怡,刘小旦,刘延涛,裴斐,常青. 髓母细胞瘤分子亚型中CD8+T淋巴细胞浸润的临床病理特点[J]. 北京大学学报(医学版), 2024, 56(3): 512-518. |
[12] | 林国中,马长城,吴超,司雨,杨军. 微通道技术在颈椎管肿瘤微创切除术中的应用[J]. 北京大学学报(医学版), 2024, 56(2): 318-321. |
[13] | 俞光岩. 儿童唾液腺疾病[J]. 北京大学学报(医学版), 2024, 56(1): 1-3. |
[14] | 薛蔚,董樑,钱宏阳,费笑晨. 前列腺癌新辅助治疗与辅助治疗的现状及进展[J]. 北京大学学报(医学版), 2023, 55(5): 775-780. |
[15] | 薛子璇,唐世英,邱敏,刘承,田晓军,陆敏,董靖晗,马潞林,张树栋. 青年肾肿瘤伴瘤栓的临床病理特征及预后分析[J]. 北京大学学报(医学版), 2023, 55(5): 802-811. |
|