北京大学学报(医学版) ›› 2020, Vol. 52 ›› Issue (3): 591-596. doi: 10.19723/j.issn.1671-167X.2020.03.030

• 技术方法 • 上一篇    下一篇

高效液相色谱法测定小鼠血浆中苯并三唑类紫外线吸收剂UV-327和UV-328

朱梅青,崔蓉()   

  1. 北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191
  • 收稿日期:2020-01-09 出版日期:2020-06-18 发布日期:2020-06-30
  • 通讯作者: 崔蓉 E-mail:cuirong19@sohu.com

Determination of UV-327 and UV-328 in mouse plasma by high performance liquid chromatography

Mei-qing ZHU,Rong CUI()   

  1. Department of Occupational and Environmental Health Science, Peking University School of Public Health, Beijing 100191, China
  • Received:2020-01-09 Online:2020-06-18 Published:2020-06-30
  • Contact: Rong CUI E-mail:cuirong19@sohu.com

RICH HTML

  

摘要:

目的 建立小鼠血浆中苯并三唑类紫外线(ultraviolet, UV)吸收剂UV-327和UV-328的高效液相色谱测定方法。方法 在小鼠血浆中加入正己烷-丙酮溶液(体积比1 ∶1)涡旋混匀提取,上清液于50 ℃下氮气吹干,残渣用甲醇溶解后离心过滤,采用高效液相色谱-紫外检测器测定小鼠血浆中UV-327和UV-328的浓度。分析柱为Waters Symmetry?C18柱 (250 mm×4.6 mm,5 μm),流动相为100%甲醇,等度洗脱,流速1.0 mL/min,紫外检测波长为340 nm,以UV-320为内标,保留时间定性,内标法定量。 结果 UV-327、UV-328在0.05~10.0 mg/L范围内呈现良好的线性关系(r=0.999 7),检出限为0.01 mg/L,定量限为0.03 mg/L。小鼠血浆中,低、中、高3种浓度(0.50、1.00、2.00 mg/L)UV-327和UV-328的平均回收率分别为91.7%~101.0%和97.5%~103.9%,日内精密度(n=6)分别为2.9%~6.6%和2.7%~7.4%,日间精密度(n=3)分别为6.0%~9.3%和6.6%~8.6%,提取回收率分别为98.8%~103.8%和99.8%~100.9%。血浆样品室温下放置6 h和-40 ℃放置15 d,UV-327测定值的相对偏差分别为0.9%~3.5%和7.4%~15.0%,UV-328测定值的相对偏差分别为2.0%~4.3%和2.1%~13.8%。3种加标浓度的小鼠血浆样品室温下至少可以放置6 h,-40 ℃冰箱中可以保存15 d。结论 高效液相色谱法简便、快速,准确度、精密度和灵敏度较高,可应用于小鼠血浆中UV-327和UV-328的分析测定。

关键词: 高效液相色谱, UV-327, UV-328, 小鼠, 血浆

Abstract:

Objective: To establish a high performance liquid chromatography (HPLC) method for the determination of ultraviolet (UV) absorbers UV-327 and UV-328 in mouse plasma.Methods: N-hexane-acetone (volume ratio 1 ∶1) was added to a mouse plasma sample as the extraction solvent for vortex extraction, and the supernatant was dried at 50 ℃ with nitrogen. Thereafter the residue was redissolved with methanol, centrifuged and filtered. The separation was performed on a Waters Symmetry?C18 column (250 mm×4.6 mm, 5 μm), and the concentrations of UV-327 and UV-328 in the mouse plasma were determined by HPLC with an UV detector. The elution was isocratic at a flow rate of 1.0 mL/min with a mobile phase composed of 100% methanol, and the UV detection wavelength was 340 nm. The retention time was used for qualitative analysis, and the internal standard method was used for quantitative analysis using UV-320 as the internal standard. Results: The calibration curves of UV-327 and UV-328 were linear with correlation coefficients of 0.999 7 over the concentration range of 0.05 to 10.0 mg/L. The limit of detection was 0.01 mg/L, and the limit of quantitation was 0.03 mg/L. The average recoveries at low, medium and high three concentrations (0.50, 1.00, 2.00 mg/L) in the mouse plasma were 91.7%-101.0% for UV-327, and 97.5%-103.9% for UV-328. The intra-day precisions (n=6) of UV-327 were 2.9%-6.6%, and 2.7%-7.4% for UV-328. The inter-day precisions (n=3) of UV-327 were 6.0%-9.3%, and 6.6%-8.6% for UV-328. The extraction recoveries of UV-327 were 98.8%-103.8%, and 99.8%-100.9% for UV-328. The measured relative deviations of UV-327 in the mouse plasma samples placed at room temperature for 6 hours and -40 ℃ for 15 days were 0.9%-3.5% and 7.4%-15.0%, and the measured relative deviations of UV-328 were 2.0%-4.3% and 2.1%-13.8%, respectively. The mouse plasma samples could be stored at room temperature for 6 hours at least and -40 ℃ for 15 days at three spiked concentration levels.Conclusion: The method was simple and fast with high accuracy, precision and sensitivity, and could be applied to the determination of UV-327 and UV-328 in mouse plasma.

Key words: High performance liquid chromatography, UV-327, UV-328, Mouse, Plasma

中图分类号: 

  • R194.2

图1

小鼠血浆中UV-320、UV-327和UV-328测定的高效液相色谱图"

表1

小鼠血浆中UV-327和UV-328准确度与精密度实验结果"

Analyte Spiked
concentration/(mg/L)
Measured
concentration/(mg/L), x?±s
Average recovery Intra-day precision
(RSD, n=6)
Inter-day precision
(RSD, n=3)
UV-327 0.50 0.46±0.04 91.7% 6.6% 9.3%
1.00 1.01±0.08 101.0% 4.3% 7.7%
2.00 2.00±0.12 99.9% 2.9% 6.0%
UV-328 0.50 0.49±0.04 97.5% 7.4% 8.6%
1.00 1.04±0.07 103.9% 3.6% 6.6%
2.00 2.01±0.14 100.8% 2.7% 6.8%

表2

小鼠血浆中UV-327和UV-328提取回收率结果(n=6)"

Analyte Spiked
concentration/(mg/L)
Peak area ratio Extraction
recovery
A B
UV-327 0.50 3.00 2.89 103.8%
1.00 5.77 5.84 98.8%
2.00 11.38 11.25 101.2%
UV-328 0.50 2.26 2.24 100.9%
1.00 4.68 4.69 99.8%
2.00 9.28 9.29 99.9%

表3

小鼠血浆中UV-327和UV-328稳定性实验结果(n=6)"

Analyte Spiked
concentration/
(mg/L)
Instant Room temperature for 6 h -40 ℃ for 15 d
Measured
concentration/
(mg/L), x?±s
Measured
concentration/
(mg/L), x?±s
Relative deviation Measured
concentration/
(mg/L), x?±s
Relative deviation
UV-327 0.50 0.45±0.01 0.45±0.01 0.9% 0.51±0.04 13.3%
1.00 0.95±0.04 0.94±0.01 1.1% 0.88±0.02 7.4%
2.00 2.00±0.04 1.93±0.17 3.5% 1.70±0.04 15.0%
UV-328 0.50 0.47±0.01 0.49±0.02 4.3% 0.46±0.01 2.1%
1.00 1.02±0.02 1.04±0.04 2.0% 0.92±0.02 9.8%
2.00 2.10±0.05 2.03±0.13 3.3% 1.81±0.05 13.8%

图2

实际样品测定色谱图"

[1] 王晶, 张子豪, 刘莹峰, 等. 3类高关注紫外线吸收剂的前处理与检测技术研究进展[J]. 分析测试学报, 2016,35(11):1505-1512.
[2] 赵海浪, 谭玉静, 韩宁, 等. GC-MS法快速测定纺织品中4种苯并三唑类紫外线吸收剂[J]. 印染, 2018,44(4):43-47.
[3] Nakata H, Murata S, Filatreau J. Occurrence and concentrations of benzotriazole UV stabilizers in marine organisms and sediments from the Ariake Sea, Japan[J]. Environ Sci Technol, 2009,43(18):6920-6926.
[4] Langford KH, Reid MJ, Fjeld E, et al. Environmental occurrence and risk of organic UV filters and stabilizers in multiple matrices in Norway[J]. Environ Int, 2015,80:1-7.
[5] Hirata-Koizumi M, Watari N, Mukai D, et al. A 28-day repeated dose toxicity study of ultraviolet absorber 2-(2'-hydroxy-3',5'-di-tert-butylphenyl) benzotriazole in rats[J]. Drug Chem Toxicol, 2007,30(4):327-341.
[6] Hirata-Koizumi M, Ogata H, Imai T, et al. A 52-week repeated dose toxicity study of ultraviolet absorber 2-(2'-hydroxy-3',5'-di-tert-butylphenyl)benzotriazole in rats[J]. Drug Chem Toxicol, 2008,31(1):81-96.
[7] Hirata-Koizumi M, Matsuyama T, Imai T, et al. Gender-related difference in the toxicity of ultraviolet absorber 2-(3',5'-di-tert-butyl-2'-hydroxyphenyl)-5-chlorobenzotriazole in rats[J]. Drug Chem Toxicol, 2008,31(3):383-398.
[8] Muir DC, Howard PH. Are there other persistent organic pollutants? A challenge for environmental chemists[J]. Environ Sci Technol, 2006,40(23):7157-7166.
[9] 中国国家标准化管理委员会. GB9685—2008 食品容器、包装材料用添加剂使用卫生标准[S]. 北京: 中华人民共和国卫生部、中国国家标准化管理委员会, 2008.
[10] Nakata H, Shinohara R, Murata S, et al. Detection of benzo-triazole UV stabilizers in the blubber of marine mammals by gas chromatography-high resolution mass spectrometry (GC-HRMS)[J]. J Environ Monit, 2010,12(11):2088-2092.
[11] Lee S, Kim S, Park J, et al. Synthetic musk compounds and benzotriazole ultraviolet stabilizers in breast milk: Occurrence, time-course variation and infant health risk[J]. Environ Res, 2015,140:466-473.
[12] Kim JW, Isobe T, Ramaswamy BR, et al. Contamination and bioaccumulation of benzotriazole ultraviolet stabilizers in fish from Manila Bay, the Philippines using an ultra-fast liquid chromatography-tandem mass spectrometry[J]. Chemosphere, 2011,85(5):751-758.
[13] Lu Z, Peart TE, Cook CJ, et al. Simultaneous determination of substituted diphenylamine antioxidants and benzotriazole ultra violet stabilizers in blood plasma and fish homogenates by ultra high performance liquid chromatography-electrospray tandem mass spectrometry[J]. J Chromatogr A, 2016,1461:51-58.
[14] Lu Z, De Silva AO, Zhou W, et al. Substituted diphenylamine antioxidants and benzotriazole UV stabilizers in blood plasma of fish, turtles, birds and dolphins from North America[J]. Sci Total Environ, 2019,647:182-190.
pmid: 30081360
[15] Peng X, Jin J, Wang C, et al. Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry[J]. J Chromatogr A, 2015,1384:97-106.
pmid: 25637008
[16] 李雯镜, 李志彤, 梁雪芳. 苯并三唑类紫外稳定剂在环境中的检测、分布及其毒性效应[J]. 生态毒理学报, 2018,13(1):89-105.
[17] 王成云, 刘彩明, 刘北卓, 等. 高效液相色谱法测定人造革中苯并三唑类紫外线吸收剂的含量[J]. 聚氯乙烯, 2016,44(7):30-34.
[1] 洪丽荣,陈雨佳,江庆来,贾汝琳,李春,冯亮华. 新型血栓四项联合常规凝血指标预测抗磷脂综合征患者血栓形成的价值[J]. 北京大学学报(医学版), 2023, 55(6): 1033-1038.
[2] 袁婷婷,李燊,吴燕,吴海涛. 长期自由选择饮酒小鼠模型的建立及其行为学评价[J]. 北京大学学报(医学版), 2023, 55(2): 315-323.
[3] 王梓,张军军,左力,王悦,李文歌,程虹,蔡广研,裴华颖,王利华,周绪杰,师素芳,刘立军,吕继成,张宏. 血浆置换治疗新月体型IgA肾病的有效性分析: 多中心队列研究[J]. 北京大学学报(医学版), 2022, 54(5): 1038-1046.
[4] 张京,宋佳桂,王振斌,龚玉清,王天卓,周津羽,战军,张宏权. Kindlin-2通过mTOR和Hippo信号通路调节小鼠子宫内膜发育[J]. 北京大学学报(医学版), 2022, 54(5): 846-852.
[5] 贾金凤,梁菲,黄建伟,王昊,韩璞青. 双重血浆分子吸附系统模式人工肝治疗对血小板的影响[J]. 北京大学学报(医学版), 2022, 54(3): 548-551.
[6] 焦翠,王俭妹,况海霞,武志红,柳涛. CACNA1H基因敲除对小鼠孤独症样行为及海马神经元形态学的影响[J]. 北京大学学报(医学版), 2022, 54(2): 209-216.
[7] 贾睿璇,姜尚伟,赵琳,杨丽萍. Cyp4v3基因敲除小鼠模型的表型分析[J]. 北京大学学报(医学版), 2021, 53(6): 1099-1106.
[8] 朱忆颖,闵赛南,俞光岩. 局部注射环孢素A对非肥胖糖尿病小鼠下颌下腺分泌功能及炎症的影响[J]. 北京大学学报(医学版), 2021, 53(4): 750-757.
[9] 石茂静,高伟波,黄文凤,朱继红. 61例血栓性血小板减少性紫癜患者的临床分析[J]. 北京大学学报(医学版), 2021, 53(1): 210-214.
[10] 李雪琦,李建伟,李秋红,阎妍,段嘉伦,崔一诺,苏展博,罗倩,许佳瑞,杜亚菲,王桂玲,谢英,吕万良. 拉洛他赛的波谱解析及高效液相色谱法对其脂质体含量的测定[J]. 北京大学学报(医学版), 2019, 51(3): 467-476.
[11] 张晓威,殷华奇,李清,赵永平,KiteBrandes,白文俊,徐涛. 人类趋化素样因子超家族2参与小鼠精子形成[J]. 北京大学学报(医学版), 2019, 51(2): 228-233.
[12] 吴天伟,崔蓉,张宝旭. 高效液相色谱法测定小鼠血浆中8-甲氧基补骨脂素及其药代动力学研究[J]. 北京大学学报(医学版), 2018, 50(5): 792-796.
[13] 赵灿,胡京敏,郭丹杰. 血浆D二聚体临界值联合Wells量表对可疑肺栓塞的除外价值[J]. 北京大学学报(医学版), 2018, 50(5): 828-832.
[14] 康磊,霍焱,王荣福,张春丽,闫平,徐小洁. MicroRNA-155靶向的放射性标记探针对乳腺癌小鼠模型的活体显像[J]. 北京大学学报(医学版), 2018, 50(2): 326-330.
[15] 张伟,庞春艳,王永福. 脂肪间充质干细胞对MRL/lpr小鼠的治疗效果及对脾脏Th17/Treg细胞平衡的影响[J]. 北京大学学报(医学版), 2017, 49(6): 974-978.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!