北京大学学报(医学版) ›› 2020, Vol. 52 ›› Issue (6): 1117-1123. doi: 10.19723/j.issn.1671-167X.2020.06.022

• 论著 • 上一篇    下一篇

固化方式对树脂水门汀氧阻聚层形成的影响

陈文新,包旭东(),岳林   

  1. 北京大学口腔医学院·口腔医院, 牙体牙髓科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081
  • 收稿日期:2019-04-24 出版日期:2020-12-18 发布日期:2020-12-13
  • 通讯作者: 包旭东 E-mail:dentistbao@126.com

Curing method affecting the formation of oxygen inhibition layer on the surface of resin cement

Wen-xin CHEN,Xu-dong BAO(),Lin YUE   

  1. Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2019-04-24 Online:2020-12-18 Published:2020-12-13
  • Contact: Xu-dong BAO E-mail:dentistbao@126.com

RICH HTML

  

摘要:

目的:探究树脂水门汀固化表面氧阻聚层内的树脂单体转化和无机成分变化规律。方法:选择3类树脂水门汀按照固化方式分为3组:(1)光固化组:RelyX Veneer、NX3(光固化型)、Variolink N;(2)双重固化组:RelyX U200 Automix、NX3(双重固化型)、Multilink Speed;(3)化学固化组:即双重固化组树脂水门汀按说明书不光照,自行暗固化。每组试样均设置有、无氧暴露的两个匹配表面,分别固化,同时光固化组和双重固化组还设置光强和光照时间变量。用扫描电镜观察试样固化后表面形貌,用能谱分析仪分析其表面元素构成。采用共聚焦显微拉曼光谱仪测量试样单体转化率,计算氧阻聚层厚度。结果:(1)有氧样本表面的氧元素质量百分比显著大于无氧样本(P<0.05), 无机元素质量百分比也显著小于无氧样本(P<0.05);(2)样本表面单体转化率有氧面均显著小于无氧面(P<0.05), 化学固化组的表面单体转化率最低(P<0.05),双重固化组最高(P<0.05),随着光照强度或时间的增加,可使各组表面单体转化率提高(P<0.05);(3)化学固化组的氧阻聚层厚度最厚为(40.27±2.81) μm,双重固化组最薄为(21.87±5.42) μm,光固化组介于两者之间为(23.73±3.84) μm,组间差异有统计学意义(P<0.05)。随着光照强度或光照时间增加,树脂水门汀氧阻聚层厚度降低(P<0.05)。结论:树脂水门汀有氧固化后,表面均会出现氧阻聚层,表现为无机填料少、单体转化率低;氧阻聚层厚度及表面单体转化率受固化方式及光照因素影响。

关键词: 树脂水门汀, 氧阻聚层, 单体转化率

Abstract:

Objective: To explore the conversion of resin monomer, the change of inorganic component and the influencing factors on the oxygen inhibition layer formed on the cured surface of resin cement. Methods: Three kinds of resin cement were divided into three groups: (1) light-cured group: RelyX Veneer, NX3 (light-cured), Variolink N; (2) dual-cured group: RelyX U200 Automix, NX3 (dual-cured), Multilink Speed; (3) chemically-cured group, and the above 3 types of dual-cured resin cement cured without illumination could be used as chemically-cured resin cement. Each sample was provided with and without oxygen exposure of two matching surfaces, cured respectively, and the variables of light intensity and illumination time were set in the light-cured group and the dual-cured group. Scanning electron microscopy was used to observe the samples’ surface morphology. Energy dispersive spectrometer was used to analyze the samples’ composition of surface elements. Confocal Raman spectroscopy was used to measure the monomer conversion of resin cement and to obtain the thickness of the oxygen inhibition layer. Results: (1) On the surface of cured resin cement, the weight percentage of oxygen element in the aerobic side was higher than that in the anaerobic side (P<0.05), and the weight percentage of inorganic element was lower than that in the anaerobic side (P<0.05). (2) The surface monomer conversion of the cured resin cement on the aerobic surface was significantly lower than that on the anaerobic surface (P<0.05), and the surface monomer conversion on the aerobic surface and the anaerobic surface was the lowest in the chemically-cured group (P<0.05), the dual-cured group was the highest (P<0.05), and the light-cured group was between them. With the increase of light intensity or illumination time, the surface monomer conversion increased (P<0.05). (3) The thickness of the oxygen inhibition layer was the thickest in the chemically-cured group [(40.27±2.81) μm](P<0.05), the thinnest in the dual-cured group [(21.87±5.42) μm](P<0.05) and light-cured group [(23.73±3.84) μm] was between them. With the increase of light intensity or illumination time, the thickness of the oxygen inhibition layer of resin cement decreased (P<0.05). Conclusion: When resin cement is exposed to oxygen, it will form an oxygen inhibition layer, its surface’s inorganic filler is less, the surface monomer conversion is lower. The surface monomer conversion and the thickness of oxygen inhibition layer are affected by curing mode and illumination factors.

Key words: Resin cement, Oxygen inhibition layer, Monomer conversion

中图分类号: 

  • R783.1

图1

试样俯视图"

图2

试样侧面观"

图3

树脂水门汀的拉曼光谱图示例"

图4

树脂水门汀固化表面的扫描电镜图(放大10 000倍)"

表1

固化后树脂水门汀有氧面、无氧面表面单体转化率"

Curing method Resin cement Aerobic surface/% Anaerobic surface/% t P
Light-cured RelyX Veneer 48.80±1.31 72.96±1.94 21.332 <0.001
NX3 49.36±3.96 68.69±3.68 7.589 <0.001
Variolink N 51.25±2.44 65.07±3.14 7.021 <0.001
Dual-cured RelyX U200 Automix 56.68±2.49 75.64±2.05 11.036 <0.001
NX3 56.38±2.11 74.58±4.24 8.328 <0.001
Multilink Speed 49.96±4.19 71.82±3.08 7.758 <0.001
Chemically-cured RelyX U200 Automix 45.65±1.69 65.22±2.43 13.613 <0.001
NX3 46.96±3.93 63.93±2.45 6.632 <0.001
Multilink Speed 41.85±1.74 67.71±3.12 15.437 <0.001

表2

光照强度及时间对光固化树脂水门汀表面单体转化率的影响"

Items 10 s 20 s 40 s 60 s F P
800 mW/cm2 39.62±3.01 42.74±2.75 43.19±0.93 46.21±2.36 10.887 0.001
1 000 mW/cm2 47.80±5.16 48.95±1.85 47.46±1.48 47.97±2.28 0.356 0.786
1 200 mW/cm2 48.29±1.40 48.80±1.31 47.72±0.67 48.49±4.31 0.722 0.553
F 15.002 17.052 0.049 1.740
P <0.001 <0.001 0.952 0.217

表3

光照强度及时间对双重固化树脂水门汀表面单体转化率的影响"

Items 10 s 20 s 40 s 60 s F P
800 mW/cm2 51.28±1.87 52.36±1.11 52.08±2.74 58.06±1.79 12.523 <0.001
1 000 mW/cm2 58.15±1.54 57.88±2.92 58.13±1.51 57.23±1.14 0.256 0.856
1 200 mW/cm2 57.81±1.96 56.68±2.49 59.95±1.66 59.88±3.68 1.970 0.159
F 34.699 7.937 20.345 1.527
P <0.001 0.006 <0.001 0.257

图5

树脂水门汀的单体转化率"

表4

光照强度及时间对光固化树脂水门汀氧阻聚厚度的影响"

Items 10 s 20 s 40 s 60 s F P
800 mW/cm2 31.20±1.79 26.40±2.19 26.40±3.58 19.20±1.79 8.917 <0.001
1 000 mW/cm2 23.20±1.79 22.40±1.79 24.80±1.79 19.20±1.79 7.704 0.002
1 200 mW/cm2 21.60±2.19 20.80±3.35 20.80±1.79 17.60±2.19 2.622 0.086
F 35.429 6.167 6.500 1.143
P <0.001 0.014 0.012 0.351

表5

光照强度及时间对双重固化树脂水门汀氧阻聚层厚度的影响"

Items 10 s 20 s 40 s 60 s F P
800 mW/cm2 26.40±2.19 24.80±1.79 23.2±1.79 19.2±3.35 8.524 <0.001
1 000 mW/cm2 20.80±1.79 19.20±5.22 20.00±2.83 19.20±3.35 0.237 0.870
1 200 mW/cm2 20.00±2.83 17.60±2.19 17.60±2.19 17.60±2.19 0.471 0.636
F 11.400 6.091 7.400 1.286
P 0.002 0.015 0.008 0.313
[1] Bergmann P, Noack MJ, Roulet JF. Marginal adaptation with glass-ceramic inlays adhesively luted with glycerine gel[J]. Quintessence Int, 1991,22(9):739-744.
pmid: 1946951
[2] Gauthier MA, Stangel I, Ellis TH, et al. Oxygen inhibition in dental resins[J]. J Dent Res, 2005,84(8):725.
doi: 10.1177/154405910508400808 pmid: 16040730
[3] Anirudhan TS, Rijith S. Synjournal and characterization of carboxyl terminated poly (methacrylic acid) grafted chitosan/bentonite composite and its application for the recovery of uranium (Ⅵ) from aqueous media[J]. J Environ Radioactiv, 2012,106(2):8-19.
doi: 10.1016/j.jenvrad.2011.10.013
[4] 赵信义. 树脂基充填材料[M]//林红. 口腔材料学. 2版. 北京: 北京大学医学出版社, 2013: 143-144, 148-149.
[5] 朱诚身. 透射电镜和扫描电镜//朱诚身. 聚合物结构分析[M]. 2版. 北京: 科学出版社, 2010: 476-480.
[6] Schulz VG, Henrici G. Reaktionskinetik der polymerisationshemmung durch molekularen Sauerstoff[J]. Macromol Chem Phys, 1957,24(1):437-454.
[7] Yatabe M, Seki H, Shirasu N, et al. Effect of the reducing agent on the oxygen-inhibited layer of the cross-linked reline material[J]. J Oral Rehabil, 2001,28(2):180.
doi: 10.1046/j.1365-2842.2001.00634.x pmid: 11298268
[8] 林娇, 高诚辉, 郑开魁, 等. 稀土增强树脂基摩擦材料的摩擦磨损性能研究[J]. 润滑与密封, 2018,43(4):53-56.
[9] 赵信义. 树脂基复合材料[M]//赵信义. 口腔材料学. 5版. 北京: 人民卫生出版社, 2012: 84-99.
[10] Bijelic-Donova J, Garoushi S, Lassila LV, et al. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength[J]. Eur J Oral Sci, 2015,123(1):53-60.
doi: 10.1111/eos.12167 pmid: 25556290
[11] Rahiotis C, Zinelis S, Elides T, et al. Setting characteristics of a resin infiltration system for incipient caries treatment[J]. J Dent, 2015,43(6):715-719.
doi: 10.1016/j.jdent.2015.03.010 pmid: 25862277
[12] Courtecuisse F, Cerezo J, Croutxé-Barghorn C, et al. Depth characterization by confocal raman microscopy of oxygen inhibition in free radical photopolymerization of acrylates: Contribution of the thiol chemistry[J]. J Polym Sci Pol Chem, 2013,51(3):635-643.
doi: 10.1002/pola.26413
[13] Truffier-Boutry D, Place E, Devaux J, et al. Interfacial layer characterization in dental composite[J]. J Oral Rehabil, 2010,30(1):74-77.
doi: 10.1046/j.1365-2842.2003.01008.x pmid: 12485387
[14] Yamaji A, Koga K, Tsujimoto A, et al. Influence of oxygen-inhibited layer on dentin bond strength of chemical-cured resin composite[J]. Eur J Oral Sci, 2013,121(5):497-503.
pmid: 24028599
[15] Souza RO, Mutlu O, Mesquita AM, et al. Effect of different polymerization devices on the degree of conversion and the physical properties of an indirect resin composite[J]. Acta Odontol Latinoam, 2010,23(2):129.
pmid: 21053686
[16] Di Francescantonio M, Aguiac TR, Arrais CA, et al. Influence of viscosity and curing mode on degree of conversion of dual-cured resin cements[J]. Eur J Dent, 2013,7(1):81-85.
pmid: 23407604
[17] Arrais CA, Giannini M, Rueggeberg FA. Kinetic analysis of monomer conversion in auto- and dual-polymerizing modes of commercial resin luting cements[J]. J Prosthet Dent, 2009,101(2):128-136.
doi: 10.1016/S0022-3913(09)60008-1 pmid: 19167537
[18] Velazquez E, Vaidyanathan J, Vaidyanathan TK, et al. Effect of primer solvent and curing mode on dentin shear bond strength and interface morphology[J]. Quintessence Int, 2003,34(7):548.
pmid: 12946075
[19] Giorgi MC, Aguiar FH, Soares LE, et al. Does an additional UV LED improve the degree of conversion and Knoop Hardness of light-shade composite resins[J]. Eur J Dent, 2012,6(4):396-401.
pmid: 23077419
[20] Rastelli AN, Jacomassi DP, Bagnato VS. Effect of power densities and irradiation times on the degree of conversion and temperature increase of a microhybrid dental composite resin[J]. Laser Phys, 2008,18(9):1074-1079.
doi: 10.1134/S1054660X08090132
[21] Nicoleta I. Comparative effect of self- or dual-curing on polymerization kinetics and mechanical properties in a novel, dental-resin-based composite with alkaline filler. running title: resin-com-posites with alkaline fillers[J]. Mater, 2018,11(1):108.
[22] 中华口腔医学会牙体牙髓病学专业委员会. 复合树脂直接粘接修复中光固化灯使用及操作规范的专家共识[J]. 中华口腔医学杂志, 2018,53(9):579-584.
[23] Hannig M, Bott B. In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources[J]. Dent Mater, 1999,15(4):275-281.
doi: 10.1016/s0109-5641(99)00047-0 pmid: 10551096
[24] Kim MJ, Kim RJ, Ferracane J, et al. Thermographic analysis of the effect of composite type, layering method, and curing light on the temperature rise of photo-cured composites in tooth cavities[J]. Dent Mater, 2017,33(10):e373.
doi: 10.1016/j.dental.2017.07.007 pmid: 28760330
[25] Yatabe M, Yasuda N, Ai M, et al. Unpolymerized Layer on Autopolymerizing, Hard Reline Materials[J]. Int J Prosthodont, 1999,12(2):129.
pmid: 10371914
[26] Park HH, Lee IB. Effect of glycerin on the surface hardness of composites after curing[J]. J Korean Acad Cons Dent, 2011,36(6):483-488.
[1] 潘怡湘,李秀花,田福聪,王晓燕. 髓腔内压对树脂水门汀与牙本质粘接强度的影响[J]. 北京大学学报(医学版), 2019, 51(2): 321-326.
[2] 廖宇,刘晓强,陈立,周建锋,谭建国. 不同表面处理方法对氧化锆与树脂水门汀粘接强度的影响[J]. 北京大学学报(医学版), 2018, 50(1): 53-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!