北京大学学报(医学版) ›› 2021, Vol. 53 ›› Issue (4): 776-784. doi: 10.19723/j.issn.1671-167X.2021.04.026
YOU Peng-yue,LIU Yu-hua(),WANG Xin-zhi,WANG Si-wen,TANG Lin
摘要:
目的: 体外检测作为引导性骨再生术(guided bone regeneration, GBR)屏障膜的脱细胞猪心包膜(acellular porcine pericardium,APP)的形貌特性及生物相容性。建立动物模型,检测其体内屏障软组织长入骨缺损的作用及对促成骨的影响。方法: 扫描电镜检测APP膜的超微结构。细胞增殖检测(cell counting kit-8,CCK-8)实验检测人骨髓间充质干细胞(human bone marrow mesenchymal stem cell, hBMSCs)接种于APP膜后第1、3、7天细胞增殖情况;接种后第5天,通过鬼笔环肽+DAPI(4,6-diamidino-2-phenylindole)对细胞骨架及细胞核进行染色,观察hBMSCs的增殖及黏附情况。体内实验建立3只比格犬、18个实验位点的牙槽嵴保存动物实验模型,随机分入APP组(拔牙窝内植入Bio-Oss®骨粉并覆盖APP膜)、BG组(拔牙窝内植入Bio-Oss®骨粉并覆盖Bio-Gide®膜)和空白组(自然愈合),术后4周和12周进行Micro-CT扫描检测各组成骨情况,脱钙后进行HE染色,组织学观察各组愈合情况。结果: 扫描电镜下APP膜具有致密及疏松双层非对称及三维多孔超微结构。体外实验证实APP膜可以促进hBMSCs的增殖及黏附,在接种后第7天APP组细胞数量显著高于BG组(P<0.05)。体内实验拔牙窝整体成骨情况:术后4周,3组新生骨比例差异无统计学意义(P>0.05);术后12周,APP组、BG组间新生骨比例差异无统计学意义(P>0.05),但均高于空白组(P<0.05)。冠方成骨情况:术后4周,APP组及BG组膜下方成骨显著高于空白组(P<0.05),组间差异无统计学意义(P>0.05);术后12周,APP组及BG组膜下方成骨显著高于空白组(P<0.05),组间差异有统计学意义(P<0.05)。颊侧骨嵴顶相对吸收量表明:术后4周,APP组显著低于空白组(P<0.05),BG组低于空白组,差异无统计学意义(P>0.05);术后12周,各组颊侧骨嵴顶继续降低,APP组相对吸收量仍显著低于空白组(P<0.05),BG组低于空白组,差异无统计学意义(P>0.05)。结论: APP膜具有良好的三维结构及细胞相容性,其在GBR中起到良好屏障软组织效果的同时,能够显著促进膜下方成骨及减少颊侧牙槽嵴顶吸收,推测其具有潜在的骨诱导能力。
中图分类号:
[1] | 赵丽萍, 胡文杰, 徐涛, 等. 罹患重度牙周病变磨牙拔牙后两种牙槽嵴保存方法的比较 [J]. 北京大学学报(医学版), 2019, 51(3):579-585. |
[2] |
Karring T, Nyman S, Gottlow J, et al. Development of the biological concept of guided tissue regeneration-animal and human studies [J]. Periodontol 2000, 1993, 1(1):26-35.
pmid: 8401858 |
[3] |
Retzepi M, Donos N. Guided Bone Regeneration: biological principle and therapeutic applications [J]. Clin Oral Implants Res, 2010, 21(6):567-576.
doi: 10.1111/(ISSN)1600-0501 |
[4] |
Gruber R, Stadlinger B, Terheyden H. Cell-to-cell communication in guided bone regeneration: molecular and cellular mechanisms [J]. Clin Oral Implants Res, 2017, 28(9):1139-1146.
doi: 10.1111/clr.2017.28.issue-9 |
[5] |
Caridade SG, Mano JF. Engineering membranes for bone rege-neration [J]. Tissue Eng Part A, 2017, 23(23/24):1502-1533.
doi: 10.1089/ten.tea.2017.0094 |
[6] | Sheikh Z, Hamdan N, Ikeda Y, et al. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review [J]. Biomater Res, 2017, 9(21):1-20. |
[7] |
Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function [J]. Acta Biomater, 2009, 5(1):1-13.
doi: 10.1016/j.actbio.2008.09.013 |
[8] |
Rothamel D, Benner M, Fienitz T, et al. Biodegradation pattern and tissue integration of native and cross-linked porcine collagen soft tissue augmentation matrices: an experimental study in the rat [J]. Head Face Med, 2014, 10(1):1-10.
doi: 10.1186/1746-160X-10-1 |
[9] |
Wang J, Wang L, Zhou Z, et al. Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review [J]. Polymers (Basel), 2016, 8(4):115-135.
doi: 10.3390/polym8040115 |
[10] |
An YZ, Kim YK, Lim SM, et al. Physiochemical properties and resorption progress of porcine skin-derived collagen membranes: in vitro and in vivo analysis [J]. Dent Mater J, 2018, 37(2):332-340.
doi: 10.4012/dmj.2017-065 |
[11] |
Brown BN, Badylak SF. Extracellular matrix as an inductive scaffold for functional tissue reconstruction [J]. Transl Res, 2014, 163(4):268-285.
doi: 10.1016/j.trsl.2013.11.003 |
[12] |
Badylak SF. The extracellular matrix as a biologic scaffold material [J]. Biomaterials, 2007, 28(25):3587-3593.
doi: 10.1016/j.biomaterials.2007.04.043 |
[13] |
Shahabipour F, Banach M, Johnston TP, et al. Novel approaches toward the generation of bioscaffolds as a potential therapy in cardiovascular tissue engineering [J]. Int J Cardiol, 2017, 228:319-326.
doi: S0167-5273(16)33685-3 pmid: 27866022 |
[14] |
Zhang J, Wang GY, Xiao YP, et al. The biomechanical behavior and host response to porcine-derived small intestine submucosa, pericardium and dermal matrix acellular grafts in a rat abdominal defect model [J]. Biomaterials, 2011, 32(29):7086-7095.
doi: 10.1016/j.biomaterials.2011.06.016 pmid: 21741703 |
[15] | 闫建伟. 牙种植引导骨再生心包胶原膜的制备及理化性能研究[D]. 山东大学, 2017. |
[16] |
Gauvin R, Marinov G, Mehri Y, et al. A comparative study of bovine and porcine pericardium to highlight their potential advantages to manufacture percutaneous cardiovascular implants [J]. J Biomater Appl, 2013, 28(4):552-565.
doi: 10.1177/0885328212465482 |
[17] |
Khorramirouz R, Go JL, Noble C, et al. In vivo response of acellular porcine pericardial for tissue engineered transcatheter aortic valves [J]. Sci Rep, 2019, 9(1):1094-1105.
doi: 10.1038/s41598-018-37550-2 pmid: 30705386 |
[18] |
Rothamel D, Schwarz F, Fienitz T, et al. Biocompatibility and biodegradation of a native porcine pericardium membrane results of in vitro and in vivo examinations [J]. Int J Oral Maxillofac Implants, 2012, 27(1):146-154.
pmid: 22299091 |
[19] |
Meyer M. Processing of collagen based biomaterials and the resulting materials properties [J]. Biomed Eng Online, 2019, 18(1):24-98.
doi: 10.1186/s12938-019-0647-0 |
[20] |
Song C, Li S, Zhang J, et al. Controllable fabrication of porous PLGA/PCL bilayer membrane for GTR using supercritical carbon dioxide foaming [J]. Appl Surf Sci, 2019, 472:82-92.
doi: 10.1016/j.apsusc.2018.04.059 |
[21] |
Talebi Ardakani MR, Hajizadeh F, Yadegari Z. Comparison of attachment and proliferation of human gingival fibroblasts on different collagen membranes [J]. Ann Maxillofac Surg, 2018, 8(2):218-223.
doi: 10.4103/ams.ams_150_17 |
[22] |
Mendoza-Novelo B, Castellano LE, Padilla-Miranda RG, et al. The component leaching from decellularized pericardial bioscaffolds and its implication in the macrophage response [J]. J Biomed Mater Res A, 2016, 104(11):2810-2822.
doi: 10.1002/jbm.a.35825 pmid: 27387409 |
[23] |
Rajabi-Zeleti S, Jalili-Firoozinezhad S, Azarnia M, et al. The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds [J]. Biomaterials, 2014, 35(3):970-982.
doi: 10.1016/j.biomaterials.2013.10.045 pmid: 24183165 |
[24] |
Megerle K, Woon C, Kraus A, et al. Flexor tendon sheath engineering using decellularized porcine pericardium [J]. Plast Reconstr Surg, 2016, 138(4):630e-641e.
doi: 10.1097/PRS.0000000000002459 |
[25] |
Pizzicannella J, Pierdomenico SD, Piattelli A, et al. 3D human periodontal stem cells and endothelial cells promote bone development in bovine pericardium-based tissue biomaterial [J]. Materials (Basel), 2019, 12(13):2157-2172.
doi: 10.3390/ma12132157 |
[26] |
Saulacic N, Schaller B, Munoz F, et al. Recombinant human BMP9 (RhBMP9) in comparison with rhBMP2 for ridge augmentation following tooth extraction: an experimental study in the Beagle dog [J]. Clin Oral Implants Res, 2018, 29(10):1050-1059.
doi: 10.1111/clr.2018.29.issue-10 |
[27] |
Kim JJ, Schwarz F, Song HY, et al. Ridge preservation of extraction sockets with chronic pathology using Bio-Oss® collagen with or without collagen membrane: an experimental study in dogs [J]. Clin Oral Implants Res, 2017, 28(6):727-733.
doi: 10.1111/clr.2017.28.issue-6 |
[28] |
Sun Y, Wang CY, Wang ZY, et al. Test in canine extraction site preservations by using mineralized collagen plug with or without membrane [J]. J Biomater Appl, 2016, 30(9):1285-1299.
doi: 10.1177/0885328215625429 pmid: 26721867 |
[29] | Lozano-Carrascal N, Delgado-Ruiz RA, Gargallo-Albiol J, et al. Xenografts supplemented with pamindronate placed in postextraction sockets to avoid crestal bone resorption. Experimental study in Fox hound dogs [J]. Clin Oral Implants Res, 2016, 27(2):149-155. |
[30] |
Araujo MG, Lindhe J. Dimensional ridge alterations following tooth extraction. An experimental study in the dog [J]. J Clin Periodontol, 2005, 32(2):212-218.
doi: 10.1111/cpe.2005.32.issue-2 |
[31] |
Macbeth N, Trullenque-Eriksson A, Donos N, et al. Hard and soft tissue changes following alveolar ridge preservation: a sys-tematic review [J]. Clin Oral Implants Res, 2017, 28(8):982-1004.
doi: 10.1111/clr.2017.28.issue-8 |
[1] | 李博文,吴唯伊,唐琳,张一,刘玉华. 改良猪小肠黏膜下层可吸收膜在兔下颌骨缺损早期愈合中的作用[J]. 北京大学学报(医学版), 2019, 51(5): 887-892. |
|