北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (1): 182-186. doi: 10.19723/j.issn.1671-167X.2022.01.029

• 论著 • 上一篇    下一篇

手臂位置对射波刀放射治疗脊柱肿瘤患者的剂量学影响

李君1,刘旭红2,3,王工1,程程1,庄洪卿1,杨瑞杰1,()   

  1. 1.北京大学第三医院肿瘤放射治疗科,北京 100191
    2.云南省肿瘤医院放射治疗科,昆明 650018
    3.昆明医科大学第三附属医院放射治疗科,昆明 650018
  • 收稿日期:2021-02-23 出版日期:2022-02-18 发布日期:2022-02-21
  • 通讯作者: 杨瑞杰 E-mail:ruijyang@yahoo.com
  • 基金资助:
    国家自然科学基金(81372420);首都卫生发展科研专项(Z201100005620012);北京市科学自然基金(7202223)

Dosimetric effect of patient arm position on Cyberknife radiosurgery for spinal tumors

LI Jun1,LIU Xu-hong2,3,WANG Gong1,CHENG Cheng1,ZHUANG Hong-qing1,YANG Rui-jie1,()   

  1. 1. Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
    2. Yunnan Cancer Hospital, Kunming 650018, China
    3. The Third Affiliated Hospital of Kunming Medical University, Kunming 650018, China
  • Received:2021-02-23 Online:2022-02-18 Published:2022-02-21
  • Contact: Rui-jie YANG E-mail:ruijyang@yahoo.com
  • Supported by:
    National Natural Science Foundation of China(81372420);Beijing Municipal Commission of Science and Technology Collaborative Innovation Project(Z201100005620012);Natural Science Foundation of Beijing(7202223)

摘要:

目的: 评估患者手臂位置变化对射波刀脊柱肿瘤放射治疗潜在剂量学的影响。方法: 选取胸椎与腰椎肿瘤患者各12例,勾画患者手臂轮廓并修改CT值和密度,使其等效为空气,模拟手臂完全移出射野的极端情况。保留原治疗计划的射束条件再次计算剂量,通过与原始计划的剂量体积直方图(dose-volume histogram, DVH)的参数比较,分析计划靶区(planning target volume, PTV)100%处方剂量的覆盖体积(V100)、95%PTV体积受照剂量(D95)、90%PTV体积受照剂量(D90)、适形指数(conformity index, CI)与异质性指数(heterogeneity index, HI),以及脊髓、胃、食管、肠道的最大受照剂量(Dmax)、1cc体积(1 mL)受照剂量(D1cc)和2cc体积(2 mL)受照剂量(D2cc)的变化。结果: 与原治疗计划相比,模拟计划的PTV V100D95D90、CI平均升高0.86%、2.02%、1.97%、0.80%,差异有统计学意义(P < 0.05);脊髓DmaxD1ccD2cc平均升高2.35%、2.59%、1.49%,差异有统计学意义(P < 0.05);胃D2cc平均升高1.70%,差异有统计学意义(P < 0.05);食管与肠道剂量差异无统计学意义。结论: 在基于射波刀的脊柱肿瘤放射治疗过程中最极端的双臂位置情况下,发现手臂位置的改变对剂量学影响很小,并且随手臂位置的改变,靶区与危及器官(organ at risk, OAR)的剂量有所增加,但增幅相对较小,因此,在某些特殊情况下,患者确实无法始终保持手臂位置一致时,可以进行合理的调整,但是为了保证剂量的精确投照,应尽可能实现患者治疗体位的稳定性与一致性。

关键词: 射波刀, 手臂位置, 脊柱肿瘤, 剂量学

Abstract:

Objective: To assess the potential dosimetric effects of arms movement in patients with Cyberknife spine tumors. Methods: In the study, 12 patients with thoracic and lumbar tumors were retrospectively selected respectively. The contour of the patient’s arms was sketched and the CT density was modified to be equivalent to air in order to simulate the extreme case when the arm was completely removed from the radiation fields. The dose of simulated plan was re-calculated with the original beam parameters and compared with the original plan. The changes of V100, D95, and D90, conformity index (CI) and heterogeneity index (HI) in planning target volume (PTV), as well as Dmax, D1cc and D2cc in the spinal cord, stomach, esophagus, and intestines were analyzed by comparing with the original plans. Results: Compared with the original treatment plan, V100, D95, D90 and CI of PTV for the simulated plan was increased by 0.86%, 2.02%,1.97% and 0.80% respectively, the difference was statistically significant (P<0.05). Dmax, D1cc and D2cc of spinal cord was increased by 2.35%, 0.59% and 1.49% on average, compared with the original plan, the difference was statistically significant (P<0.05). The difference was statistically significant only in average D2cc of stomach, which was increased by 1.70%, compared with the original plan (P<0.05). There was no significant difference in dose change of eso-phagus and intestine between the original and simulated plans. Conclusion: This study analyzed the most extreme arm position in spinal tumor of radiation therapy based on Cyberknife. It was found that the change of arm position had little effect on dosimetry. In addition, with the change of arm position, the dose in PTV and organ at risk (OAR) increased, but the increase was relatively small. Therefore, in some special cases where the patient really can’t keep the arm position consistent during treatment, reasonable adjustment can be accepted. However, in order to ensure accurate radiotherapy, patient position should be as stable and consistent as possible.

Key words: Cyberknife, Position of arm, Spinal tumor, Dosimetry

中图分类号: 

  • R739.92

图1

脊柱肿瘤患者放射治疗模拟计划"

图2

胸椎肿瘤原始计划与模拟计划剂量分布及DVH比较"

图3

腰椎原始计划与模拟计划剂量分布及DVH比较"

表1

患者手臂不同位置的两种计划靶区剂量学参数比较($\bar{x}\pm s$)"

PTV Original plan Simulation plan 95%CI t value P value
V100 93.84%±0.80% 94.65%±1.40% 0.902(0.225-1.781) 3.319 0.004
D95/Gy 27.59±4.86 28.15±5.13 1.075(0.526-1.924) 5.740 <0.001
D90/Gy 28.93±5.12 29.50±5.57 1.161(0.631-2.388) 5.960 <0.001
CI 0.75±0.16 0.76±0.13 0.027(0.001-0.055) 2.781 0.020
HI 1.32±0.67 1.31±0.06 0.008(0.014-0.029) 1.000 0.330

表2

患者手臂不同位置的两种计划危及器官剂量学参数比较($\bar{x}\pm s$)"

Organ Parameters Original plan Simulation plan 95%CI t value P value
Spinal cord/cauda equina
Dmax/Gy 23.86±4.65 24.42±4.90 1.347(0.720-2.521) 4.573 <0.001
D1cc/Gy 20.02±4.85 20.54±4.97 1.282(0.579-2.577) 5.280 <0.001
D2cc/Gy 18.74±5.21 19.02±5.32 1.019(0.486-3.219) 2.796 0.017
Esophagus
Dmax/Gy 22.37±4.24 22.53±4.70 0.260(0.109-0.670) 1.918 0.061
D1cc/Gy 18.39±4.13 18.48±4.22 0.535(0.068-2.059) 1.873 0.073
D2cc/Gy 15.63±5.38 15.70±5.58 0.231(0.085-0.765) 1.540 0.082
Stomach
Dmax/Gy 10.33±3.35 10.50±3.27 0.313(0.114-1.082) 2.018 0.058
D1cc/Gy 8.36±3.10 8.43±3.22 0.073(0.034-0.283) 1.185 0.251
D2cc/Gy 7.63±2.93 7.76±2.85 0.460(0.244-1.319) 2.273 0.035
Bowel
Dmax/Gy 9.98±3.77 10.02±3.83 0.047(0.022-0.189) 1.350 0.193
D1cc/Gy 8.90±3.64 8.93±3.56 0.043(0.028-0.239) 1.255 0.225
D2cc/Gy 7.61±3.37 7.63±3.84 0.064(0.049-0.191) 1.748 0.097
[1] Sahgal A, Chang JH, Ma L, et al. Spinal cord dose tolerance to stereotactic body radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2021, 110(1):124-136.
doi: 10.1016/j.ijrobp.2019.09.038
[2] Hwang L, Okoye CC, Patel RB, et al. Stereotactic body radiotherapy for benign spinal tumors: Meningiomas, schwannomas, and neurofibromas[J]. J Radiosurg SBRT, 2019, 6(3):167-177.
[3] Hariri O, Takayanagi A, Lischalk J, et al. Clinical efficacy of frameless stereotactic radiosurgery in the management of spinal metastases from thyroid carcinoma[J]. Spine, 2019, 44(20):1188-1195.
doi: 10.1097/BRS.0000000000003087 pmid: 31261273
[4] 张喜乐, 杨瑞杰, 李君, 等. 射波刀VSI系统主要性能测试[J]. 中华放射肿瘤学杂志, 2018, 27(10):925-929.
[5] 张喜乐, 杨瑞杰, 李君, 等. 四种探测器测量射波刀离轴比曲线的比较分析[J]. 中华放射医学与防护杂志, 2017, 37(9):671-676.
[6] 程光惠, 武宁, 韩东梅, 等. 不同体位固定技术在胸腹部肿瘤放射治疗中的应用比较[J]. 中国肿瘤, 2010, 19(10):702-704.
[7] 司小三. 不同体位固定技术在胸腹部肿瘤放射治疗中的临床效果观察[J]. 白求恩医学杂志, 2017, 15(6):789-791.
[8] Shultz DB, Jang SS, Hanlon AL, et al. The effect of arm position on the dosimetry of thoracic stereotactic ablative radiation therapy using volumetric modulated arc therapy[J]. Pract Radiat Oncol, 2014, 4:192-197.
doi: S1879-8500(13)00272-5 pmid: 24766687
[9] Moore K, Paterson C, Hicks J, et al. Stereotactic ablative body radiotherapy for non-small-cell lung cancer: setup reproducibility with novel arms-down immobilization[J]. Br J Radiol, 2016, 89(1068):20160227.
doi: 10.1259/bjr.20160227
[10] Murrell DH, Karnas SJ, Corkum MT, et al. Radical radiotherapy for locally advanced non-small cell lung cancer-what’s up with arm positioning?[J]. J Thorac Dis, 2019, 11(5):2099-2104.
doi: 10.21037/jtd.2019.05.40 pmid: 31285903
[11] 王建军, 刘邦, 刘伟. 手臂位置对采用容积调制弧光疗法进行胸腔立体定向放疗的影响[J]中西医结合心血管病电子杂志, 2020, 8(20):168-173.
[12] Fürweger C, Drexler C, Muacevic A, et al. CyberKnife robotic spinal radiosurgery in proneposition: dosimetric advantage due to posterior radiation access?[J]. J Appl Clin Med Phys, 2014, 15(4):11-21.
doi: 10.1120/jacmp.v15i4.4427
[13] Lin C, Donaldson SS, Meza JL, et al. Effect of radiotherapy techniques (IMRT vs. 3D-CRT) on outcome in patients with inter-mediate-risk rhabdomyosarcoma enrolled in COG D9803: a report from the Children’s Oncology Group[J]. Int J Radiat Oncol Biol Phys, 2012, 82(5):1764-1770.
doi: 10.1016/j.ijrobp.2011.01.036
[14] Rao AD, Chen Q, Million L, et al. Preoperative intensity modulated radiation therapy compared to three-dimensional conformal radiation therapy for high-grade extremity sarcomas in children: analysis of the children’s oncology group study ARST0332[J]. Int J Radiat Oncol Biol Phys, 2019, 103(1):38-44.
doi: 10.1016/j.ijrobp.2018.09.005
[1] 孙海涛,杨瑞杰,江萍,姜伟娟,李金娜,孟娜,王俊杰. 乳腺癌保乳术后容积旋转调强和切线野调强放疗的剂量学比较[J]. 北京大学学报(医学版), 2018, 50(1): 188-192.
[2] 李彦,姜亮,刘晓光,刘忠军,韦峰,吴奉梁,党礌. 肺癌脊柱转移瘤的手术治疗疗效及生存分析[J]. 北京大学学报(医学版), 2014, 46(1): 138-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘波, 于世凤, 庞淑珍. 骨巨细胞瘤中多核巨细胞的纯化及其性质的探讨[J]. 北京大学学报(医学版), 2003, 35(1): 23 -27 .
[2] 刘畅, 宋振华, 秦泽莲. 人periostin干扰载体的构建及其对成纤维细胞目的基因表达的影响[J]. 北京大学学报(医学版), 2010, 42(5): 503 -508 .
[3] 张颖妹, 王应, 徐茜梅, 吕冰峰, 马大龙. 利用NF-κB转录活性萤光素酶报告系统检测白细胞介素1及白细胞介素1受体拮抗剂的生物活性[J]. 北京大学学报(医学版), 2006, 38(6): 653 -656 .
[4] 田雨, 田玉玲, 李俊霞, 戴芸, 王化虹, 刘新光. 饮食多不饱和脂肪酸ω-3、ω-6比值对小鼠实验性结肠炎的影响[J]. 北京大学学报(医学版), 2013, 45(2): 227 .
[5] 闫睿, 栾庆先, 刘力笙, 王兴宇, 李蓬, 沙月琴. 代谢综合征相关线粒体基因单核苷酸多态性与慢性牙周炎的关系[J]. 北京大学学报(医学版), 2014, 46(2): 264 -268 .
[6] 宋逸, 张冰, 胡佩瑾, 马军. 2010年中国26个少数民族9~18岁女生月经初潮年龄现状分析与比较[J]. 北京大学学报(医学版), 2014, 46(3): 360 -365 .
[7] 王琳琳, 杨娜, 袁悦, 任爱国. 人叶酸受体自身抗体IgG酶联免疫吸附试验检测方法的建立及评价[J]. 北京大学学报(医学版), 2014, 46(3): 483 -487 .
[8] 刘萌, 付占立, 邸丽娟, 张建华, 范岩, 张旭初, 王荣福. 利尿肾动态显像在单侧肾盂输尿管连接部狭窄患者的手术或保守治疗中的应用[J]. 北京大学学报(医学版), 2015, 47(4): 638 -642 .
[9] 贾维茜,赵玉鸣,葛立宏. 人重组转化生长因子β1促进牙髓干细胞的增殖和矿化[J]. 北京大学学报(医学版), 2017, 49(4): 680 -681 .
[10] 赵磊,张洪宪,侯小飞,刘磊,陆敏,韩永,马潞林. 来氟米特联合羟苯磺酸钙治疗肾移植术后BK病毒相关性肾病[J]. 北京大学学报(医学版), 2020, 52(2): 385 -389 .