北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (4): 599-604. doi: 10.19723/j.issn.1671-167X.2022.04.004

• 论著 • 上一篇    下一篇

4′-甲基醚金连木黄酮对棕榈酸诱导的大鼠阴茎海绵体内皮细胞功能障碍的影响

顾阳阳1,谭晓辉1,宋文鹏1,方冬1,宋卫东1,袁亦铭1,冯宁翰2,*(),关瑞礼1,*()   

  1. 1. 北京大学第一医院泌尿外科,北京大学泌尿外科研究所,北京 100034
    2. 南京医科大学附属无锡第二医院泌尿外科,江苏无锡 214002
  • 收稿日期:2022-03-25 出版日期:2022-08-18 发布日期:2022-08-11
  • 通讯作者: 冯宁翰,关瑞礼 E-mail:n.feng@njmu.edu.cn;guanruili@bjmu.edu.cn
  • 基金资助:
    国家自然科学基金(81971379);无锡市“太湖人才计划”医疗卫生高层次人才项目

Effects of 4′-O-methylochnaflavone on endothelial dysfunction induced by palmitic acid in rat cavernous endothelial cells

Yang-yang GU1,Xiao-hui TAN1,Wen-peng SONG1,Dong FANG1,Wei-dong SONG1,Yi-ming YUAN1,Ning-han FENG2,*(),Rui-li GUAN1,*()   

  1. 1. Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing 100034, China
    2. Department of Urology, Wuxi Second Hospital, Nanjing Medical University, Wuxi 214002, Jiangsu, China
  • Received:2022-03-25 Online:2022-08-18 Published:2022-08-11
  • Contact: Ning-han FENG,Rui-li GUAN E-mail:n.feng@njmu.edu.cn;guanruili@bjmu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(81971379);the Wuxi "Taihu Talents Program" Medical and Health High-Level Talents Project

摘要:

目的: 探讨双黄酮类药物4′-甲基醚金连木黄酮(4′-O-methylochnaflavone, MF)对棕榈酸诱导的大鼠阴茎海绵体内皮细胞(rat cavernous endothelial cells, RCECs)功能障碍的影响。方法: 将RCECs随机分为4组,分别为正常+牛血清白蛋白组(NC组)、棕榈酸(palmitic acid,PA)组、MF治疗组、淫羊藿次苷Ⅱ(icasiside Ⅱ,ICA Ⅱ)治疗组。采用蛋白印迹实验检测各组细胞的蛋白激酶B(protein kinase B, PKB/AKT)和内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)蛋白表达水平,使用一氧化氮荧光探针检测MF以及ICA Ⅱ对RCECs内一氧化氮含量的影响,使用CCK-8试剂盒检测MF、ICA Ⅱ对PA诱导后的RCECs增殖能力的影响。结果: 与NC组相比,MF组、ICA Ⅱ组处理后细胞内一氧化氮含量显著增加(P < 0.05),MF组的效果优于ICA Ⅱ组(P < 0.05)。与NC组相比,PA组的eNOS和AKT蛋白表达水平明显降低,提示成功构建了用于模拟高脂环境的体外RCECs内皮功能障碍模型(P < 0.05)。MF组干预后能够有效提高eNOS、AKT的表达水平,表明MF可促进恢复游离脂肪酸造成的内皮细胞损伤(P < 0.05)。CCK-8增殖实验显示PA显著降低RCECs的增殖数量(P < 0.05),而给予MF、ICA Ⅱ治疗后细胞增殖能力得到显著恢复(P < 0.05)。结论: 在RCECs中,MF与ICA Ⅱ能够有效增加细胞内一氧化氮含量,PA处理后AKT/eNOS通路的下调揭示其参与内皮细胞损伤的发生、发展,而MF的干预能够有效逆转上述变化,此外,PA诱导下RCECs的细胞增殖能力明显下降,而MF与ICA Ⅱ干预能够恢复上述变化。双黄酮类药物MF对PA诱导的RCECs细胞功能障碍有一定程度的修复作用。

关键词: 内皮细胞功能障碍, 棕榈酸, 一氧化氮合酶, 信号转导

Abstract:

Objective: To investigate the effect of biflavonoid 4′-O-methylochnaflavone (MF) on palmitic acid-induced endothelial dysfunction in rat cavernous endothelial cells (RCECs). Methods: The isolated RCECs were commercially available and randomly divided into four groups: normal+BSA group (NC group), palmitic acid (PA) group, MF group, and icariside Ⅱ (ICA Ⅱ) group. The protein expression levels of protein kinase B (PKB/AKT) and endothelial nitric oxide synthase (eNOS) in each group were evaluated via Western blotting. The differences in the intracellular nitric oxide of RCECs treated by MF or ICA Ⅱ were detected by DAF-FM DA that served as a nitric oxide fluorescent probe. Effects of MF and ICA Ⅱ on cell proliferation of PA-stimulated RCECs were determined via CCK-8 assay. Results: The content of nitric oxide in RCECs was significantly increased after the treatment of MF and ICA Ⅱ in comparison with the NC group (P < 0.05). Moreover, compared with ICA Ⅱ group, MF demonstrated a more obvious effect in promoting nitric oxide production (P < 0.05). Compared with the NC group, the expression levels of eNOS and AKT in the PA group were significantly decreased, indicating that a model for simulating the high-fat environment in vitro was successfully constructed (P < 0.05). Meanwhile, the intervention of MF and ICA Ⅱ could effectively increase the expression of eNOS and AKT, suggesting that MF and ICA Ⅱ could promote the recovery of endothelial dysfunction caused by high levels of free fatty acids (P < 0.05). The results of CCK-8 assays showed that PA could significantly reduce the proli-feration ability of RCECs (P < 0.05). Furthermore, the decreased cell viability induced by PA was significantly elevated by treatment with ICA Ⅱ and MF (P < 0.05). Conclusion: In RCECs, MF and ICA Ⅱ could effectively increase the content of nitric oxide. The down-regulation of the expression of proteins associated with the AKT/eNOS pathway after PA treatment revealed that this pathway was involved in the development of endothelial dysfunction, which could be effectively reversed by MF and ICA Ⅱ. In addition, the cell proliferation ability was significantly decreased following PA treatment, but MF and ICA Ⅱ could restore the above changes. Overall, biflavonoid MF has an obvious repairing effect on PA-stimulated endothelial dysfunction.

Key words: Endothelial dysfunction, Palmitic acid, Nitric oxide synthase, Signal transduction

中图分类号: 

  • R698.1

图1

4′-甲基醚金连木黄酮和淫羊藿次苷Ⅱ的化学结构示意图"

图2

MF和ICA Ⅱ处理后细胞内NO含量的变化 NC, normal control; MF, 4′-O-methylochnaflavone; ICA Ⅱ, icariside Ⅱ; NO, nitric oxide; a.u., arbitrary unit. *P < 0.05; ***P < 0.001."

图3

PA处理后内皮细胞内eNOS和AKT蛋白的变化"

图4

MF和ICA Ⅱ治疗后PA刺激下内皮细胞内eNOS和AKT蛋白的变化"

图5

MF和ICA Ⅱ治疗后PA刺激下RCECs增殖能力的变化"

1 Bakr AM , El-Sakka AI . Erectile dysfunction among patients and health care providers during COVID-19 pandemic: A systematic review[J]. Int J Impot Res, 2022, 34 (2): 145- 151.
doi: 10.1038/s41443-021-00504-w
2 Yafi FA , Jenkins L , Albersen M , et al. Erectile dysfunction[J]. Nat Rev Dis Primers, 2016, 2, 16003.
doi: 10.1038/nrdp.2016.3
3 Ghosh A , Gao L , Thakur A , et al. Role of free fatty acids in endothelial dysfunction[J]. J Biomed Sci, 2017, 24 (1): 50.
doi: 10.1186/s12929-017-0357-5
4 Zhao Y , Vanhoutte PM , Leung SWS . Vascular nitric oxide: Beyond eNOS[J]. J Pharmacol Sci, 2015, 129 (2): 83- 94.
doi: 10.1016/j.jphs.2015.09.002
5 Boden G . Obesity and free fatty acids[J]. Endocrin Metab Clin, 2008, 37 (3): 635- 646.
doi: 10.1016/j.ecl.2008.06.007
6 Egan BM , Greene EL , Goodfriend TL . Nonesterified fatty acids in blood pressure control and cardiovascular complications[J]. Curr Hypertens Rep, 2001, 3 (2): 107- 116.
doi: 10.1007/s11906-001-0021-y
7 Haus JM , Solomon TPJ , Marchetti CM , et al. Free fatty acid-induced hepatic insulin resistance is attenuated following lifestyle intervention in obese individuals with impaired glucose tolerance[J]. J Clin Endocr Metab, 2010, 95 (1): 323- 327.
doi: 10.1210/jc.2009-1101
8 Durrant JR , Seals DR , Connell ML , et al. Voluntary wheel running restores endothelial function in conduit arteries of old mice: Direct evidence for reduced oxidative stress, increased superoxide dismutase activity and down-regulation of NADPH oxidase[J]. J Physiol, 2009, 587 (13): 3271- 3285.
doi: 10.1113/jphysiol.2009.169771
9 Khan MJ , Rizwan Alam M , Waldeck-Weiermair M , et al. Inhibition of autophagy rescues palmitic acid-induced necroptosis of endothelial cells[J]. J Biol Chem, 2012, 287 (25): 21110- 21120.
doi: 10.1074/jbc.M111.319129
10 Lee C , Lee S , Ou H , et al. Eicosapentaenoic acid protects against palmitic acid-induced endothelial dysfunction via activation of the AMPK/eNOS pathway[J]. Int J Mol Sci, 2014, 15 (6): 10334- 10349.
doi: 10.3390/ijms150610334
11 Wang L , Xu Y , Li H , et al. Antioxidant icariside Ⅱ combined with insulin restores erectile function in streptozotocin-induced type 1 diabetic rats[J]. J Cell Mol Med, 2015, 19 (5): 960- 969.
doi: 10.1111/jcmm.12480
12 Gu S J , Li M , Yuan YM , et al. A novel flavonoid derivative of icariside Ⅱ improves erectile dysfunction in a rat model of caver-nous nerve injury[J]. Andrology, 2021, 9 (6): 1893- 1901.
doi: 10.1111/andr.13065
13 Godo S , Shimokawa H . Endothelial functions[J]. Arterioscler Thromb Vasc Biol, 2017, 37 (9): e108- e114.
14 Chlopicki S . Perspectives in pharmacology of endothelium: From bench to bedside[J]. Pharmacol Rep, 2015, 67 (4): vi- ix.
doi: 10.1016/j.pharep.2015.08.005
15 Everaert BR , van Craenenbroeck EM , Hoymans VY , et al. Current perspective of pathophysiological and interventional effects on endothelial progenitor cell biology: Focus on Pi3K/AKT/eNOS pathway[J]. Int J Cardiol, 2010, 144 (3): 350- 366.
doi: 10.1016/j.ijcard.2010.04.018
16 Morris G , Puri BK , Olive L , et al. Endothelial dysfunction in neuroprogressive disorders-causes and suggested treatments[J]. BMC Med, 2020, 18 (1): 305.
doi: 10.1186/s12916-020-01749-w
17 Mu H , Liu H , Zhang J , et al. Ursolic acid prevents doxorubicin-induced cardiac toxicity in mice through eNOS activation and inhibition of eNOS uncoupling[J]. J Cell Mol Med, 2019, 23 (3): 2174- 2183.
doi: 10.1111/jcmm.14130
18 Schmitt CA , Dirsch VM . Modulation of endothelial nitric oxide by plant-derived products[J]. Nitric Oxide, 2009, 21 (2): 77- 91.
19 García-Prieto CF , Hernández-Nuño F , Rio DD , et al. High-fat diet induces endothelial dysfunction through a down-regulation of the endothelial AMPK-PI3K-Akt-eNOS pathway[J]. Mol Nutr Food Res, 2015, 59 (3): 520- 532.
doi: 10.1002/mnfr.201400539
20 Vadivel V , Kunyanga CN , Biesalski HK . Health benefits of nut consumption with special reference to body weight control[J]. Nutrition, 2012, 28 (11/12): 1089- 1097.
21 Brookheart RT , Michel CI , Schaffer JE . As a matter of fat[J]. Cell Metab, 2009, 10 (1): 9- 12.
doi: 10.1016/j.cmet.2009.03.011
22 Wang M , Gao H , Li W , et al. Icariin and its metabolites regulate lipid metabolism: From effects to molecular mechanisms[J]. Biomed Pharmacother, 2020, 131, 110675.
23 Li H , Xu Y , Guan R , et al. Icariside Ⅱ prevents high-glucose-induced injury on human cavernous endothelial cells through Akt-eNOS signaling pathway[J]. Andrology, 2015, 3 (2): 408- 416.
24 Lee S J , Choi JH , Son KH , et al. Suppression of mouse lymphocyte proliferation in vitro by naturally-occurring biflavonoids[J]. Life Sci, 1995, 57 (6): 551- 558.
25 Li L , Ma L , Hu Y , et al. Natural biflavones are potent inhibitors against SARS-CoV-2 papain-like protease[J]. Phytochemistry, 2022, 193, 112984.
[1] 杨菁,杜娟,王玉湘,刘从容. JAK/STAT信号通路在卵巢高级别浆液性癌中的激活及预后意义[J]. 北京大学学报(医学版), 2023, 55(2): 270-275.
[2] 董尔丹. 心血管受体的信号转导与疾病[J]. 北京大学学报(医学版), 2022, 54(5): 796-802.
[3] 肖洋,杜瑶瑶,高成,孔炜. microRNA在高磷诱导血管平滑肌细胞钙化早期的动态变化[J]. 北京大学学报(医学版), 2016, 48(5): 756-765.
[4] 刘涛, 覃新程, 李维仁, 周峰, 李广永, 辛华, 巩艳青, 辛钟成. 淫羊藿苷和淫羊藿次苷Ⅱ对内皮细胞eNOS表达和NOS活性的影响[J]. 北京大学学报(医学版), 2011, 43(4): 500-504.
[5] 廖艳, 黎海芪, 邓兵, 瞿平. 围生期宫内生长迟缓胎鼠的发育及其肝胰岛素信号转导蛋白的表达[J]. 北京大学学报(医学版), 2008, 40(5): 538-542.
[6] 崔玉英, 唐朝枢, 耿彬. 束缚应激大鼠血小板及血管内膜的L-精氨酸/一氧化氮合酶/一氧化氮通路下调[J]. 北京大学学报(医学版), 2006, 38(3): 231-235.
[7] 韩颖, 秦炯, 卜定方, 杨志仙, 常杏芝, 杜军保. 反复热性惊厥过程中γ-氨基丁酸B受体对一氧化氮/一氧化氮合酶体系的调节作用[J]. 北京大学学报(医学版), 2006, 38(2): 132-134.
[8] 崔玉英, 张立克, 伍期专, 蒋宏锋, 唐朝枢, 耿彬. 溶血磷脂酸激活大鼠血小板L-精氨酸/一氧化氮通路[J]. 北京大学学报(医学版), 2005, 37(6): 603-607.
[9] 焦红梅, 谢鹏雁. 替加色罗抑制内脏高敏大鼠直肠扩张反应和脊髓神经元性一氧化氮合酶的表达[J]. 北京大学学报(医学版), 2004, 36(4): 394-398.
[10] 李爱军, 房军, 朱秀安. N-Arg对RCS大鼠遗传性视网膜变性视细胞凋亡的影响[J]. 北京大学学报(医学版), 2004, 36(4): 353-356.
[11] 董献红, 李菊香, 钟光珍, 任永生, 吴胜英, 唐朝枢. 来源于肾上腺髓质素原的不同肽段对大鼠主动脉一氧化氮生成的影响[J]. 北京大学学报(医学版), 2003, 35(2): 146-149.
[12] 崔彩莲, 马勤耘, 吴鎏桢, 李雪, 魏娜, 韩济生. 2/100 Hz电针抑制吗啡戒断大鼠中枢神经元型一氧化氮合酶的表达[J]. 北京大学学报(医学版), 2002, 34(4): 321-325.
[13] 余兵, 何权瀛, 高占成, 虞有智. 白三烯受体拮抗剂对哮喘小鼠的气道炎症及肺内一氧化氮合酶的影响[J]. 北京大学学报(医学版), 2002, 34(1): 52-56.
[14] 饶煜, 库宝善. 褪黑激素对大鼠缺血/再灌注所致脑损伤的保护机制[J]. 北京大学学报(医学版), 2001, 33(2): 164-166.
[15] 王俊梅, 宋明清, 刘斌. 诱生型一氧化氮合酶抑制剂氨基胍对鼠胚发育的影响[J]. 北京大学学报(医学版), 2001, 33(2): 153-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 管宏, 赵慧云, 沈磊, 李五岭, 王建华, 王春荣, 徐福. 联合应用重组TPO和G-CSF对骨髓抑制性小鼠外周血小板及白细胞恢复的影响[J]. 北京大学学报(医学版), 2001, 33(2): 181 -182 .
[2] 牟向东, 王广发, 阙呈立, 李桂莲. H3N2型人流行性感冒合并金黄色葡萄球菌败血症及金黄色葡萄球菌肺炎1例[J]. 北京大学学报(医学版), 2007, 39(6): 663 -665 .
[3] 范蓉, 张成飞, 高岩, 李斌斌, 王晶. 核因子-κB受体活化因子配体和骨保护素在慢性根尖周炎病损组织中的表达[J]. 北京大学学报(医学版), 2008, 40(1): 39 -42 .
[4] 牟向东, 聂立功, 王广发, 阙呈立, 李海潮. 特发性肺泡蛋白沉着症:3例报道及文献回顾[J]. 北京大学学报(医学版), 2008, 40(5): 551 -554 .
[5] 冯艺, 崔明磊, William D.WILLIS. 抗惊厥药加巴喷丁抑制内脏疼痛的作用及其与脊髓氨基酸递质释放的关系[J]. 北京大学学报(医学版), 2003, 35(3): 307 -310 .
[6] 张奇, 罗国安, 邓英杰. 均匀设计法制备5-氟尿嘧啶脂质体及其稳定性[J]. 北京大学学报(医学版), 2002, 34(1): 64 -67 .
[7] 李云芳, 张幼怡, 侯嵘, 董尔丹, 韩启德. 质粒转染对HEK293和DDT1-MF2细胞天然β2-肾上腺素受体表达的影响[J]. 北京大学学报(医学版), 2001, 33(5): 457 -461 .
[8] 冯现竹, 侯平, 朱厉, 于磊, 张宏. 转铁蛋白受体基因多态性与IgA肾病易感性及临床病理表型的相关性[J]. 北京大学学报(医学版), 2008, 40(4): 369 -373 .
[9] 王倩, 张翼, 陆敏, 管又飞, 朱毅, 王悦. 高盐诱导的高血压大鼠模型肾组织可溶性表氧化物酶高表达及其作用初步探讨[J]. 北京大学学报(医学版), 2010, 42(2): 126 -130 .
[10] 熊祖应, 黄海长, 李惊子, 王海燕. 活动性肾小球肾炎中过氧化脂质体增殖激活受体γ在肾脏的表达[J]. 北京大学学报(医学版), 2003, 35(5): 499 -502 .