论著

miR-106b-5p在调节内皮细胞基因表达谱中的作用

  • 张静 ,
  • 李素芳 ,
  • 陈红 ,
  • 宋俊贤
展开
  • 北京大学人民医院心血管内科,急性心肌梗死早期预警和干预北京市重点实验室,北京大学人民医院心血管转化医学研究中心, 北京 100044

收稿日期: 2017-05-22

  网络出版日期: 2019-04-26

基金资助

国家自然科学基金(81400264)

Role of miR-106b-5p in the regulation of gene profiles in endothelial cells

  • Jing ZHANG ,
  • Su-fang LI ,
  • Hong CHEN ,
  • Jun-xian SONG
Expand
  • Center for Cardiovascular Translational Research, Peking University People’s Hospital, Beijing 100044, China;

Received date: 2017-05-22

  Online published: 2019-04-26

Supported by

the National Natural Science Foundation of China(81400264)

摘要

目的: 评估miR-106b-5p对内皮细胞基因表达谱的影响。方法: 对动脉粥样硬化组(n=9)及对照组(n=9)血浆中miRNAs表达谱进行筛查,采用共表达网络分别对两组样本全体miRNAs 的共表达模式进行分析。选取从两组网络中得到的共表达地位差异最为显著的miR-106b-5p进一步研究,通过转染miR-106b-5p mimics上调人脐静脉内皮细胞的miR-106b-5p表达水平,筛查转染后差异基因表达谱,并进一步通过日本京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)信号转导通路数据库对差异基因富集的信号通路进行分析。结果: 动脉粥样硬化组患者血浆中miRNAs的共表达模式(140个节点,1 154条连接线)与对照组(140个节点,612条连接线)相比存在明显差异,在过表达miR-106b-5p后人脐静脉内皮细胞有746个基因水平发生了显著变化(组间差异倍数≥1.5,芯片错误发现率<0.01),主要包括磷脂酰肌醇-3激酶(phosphoinositide 3-kinase,PI3K)/蛋白激酶B(protein kinase B,PKB,又称Akt)信号通路、哺乳动物雷帕霉素受体蛋白(mammalian target of rapamycin,mTOR)信号通路、转化生长因子-β(transforming growth factor-β,TGF-β)信号通路、酪氨酸激酶-信号转导及转录激活因子信号通路(janus kinase / signal transducer and activator of transcription,Jak-STAT)信号通路、肿瘤坏死因子(tumor necrosis factor,TNF)信号通路、toll样受体(toll-like receptor,TLR)信号通路、血管内皮生长因子(vascular endothelial growth factor,VEGF)信号通路等20个信号通路。结论: 动脉粥样硬化患者血浆中miRNAs共表达模式发生了显著变化,其中共表达地位差异最为显著的miR-106b-5p可靶向调节血管内皮细胞多个信号通路。

本文引用格式

张静 , 李素芳 , 陈红 , 宋俊贤 . miR-106b-5p在调节内皮细胞基因表达谱中的作用[J]. 北京大学学报(医学版), 2019 , 51(2) : 221 -227 . DOI: 10.19723/j.issn.1671-167X.2019.02.004

Abstract

Objective: To evaluate the role of miR-106b-5p in the regulation of gene expression in endothelial cells.Methods: The Taqman low-density microRNAs (miRNAs) array (TLDA) was used to identify miRNA expression profiles in the plasma of patients with atherosclerotic coronary artery disease (CAD) (atherosclerosis group, n=9) and individuals without atherosclerotic CAD disease (control group, n=9). A weighed and undirected miRNA coexpression network analysis was performed to investigate the interactions among miRNAs in the two groups. MiR-106b-5p, whose coexpression pattern in atherosclerosis group was most different from that of control group, was further studied. Human umbilical vein endothelial cells (HUVEC) were transfected with miR-106b-5p mimic or negative control mimic, and Affymetrix GeneChip Human Transcriptome Array 2.0 was used to screen the differential gene expression profiles after transfection. And the signal transduction pathway of differential gene profiles was further analyzed in Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway database. After parsing the whole KEGG database, all differentially expressed genes involved pathways were extracted, and the hypergeometric distribution was used to calculate the pathway enrichment.Results: The coexpression pattern of the patients with atherosclerosis (140 nodes, 1 154 edges) differed from that of the non-atherosclerosis control group (140 nodes, 612 edges). The analysis of array data with significant analysis of microarray (SAM) identified 746 significantly deregulated genes (fold change ≥ 1.5 and false discovery rate < 0.01) altered by overexpression of miR-106b-5p with miR-106b-5p mimic in HUVEC. By calculating the pathway enrichment, we found that multiple signaling pathways enriched in differential gene profiles were closely related to the process of formation and rupture of atherosclerotic plaque, including phosphatidylinositol-3 kinase (PI3K)/ protein kinase B (PKB, also called Akt), mammalian target of rapamycin (mTOR), transforming growth factor-β (TGF-β), janus kinase / signal transducer and activator of transcription (Jak-STAT), tumor necrosis factor (TNF), toll like receptor (TLR) and hypoxia-inducible factor 1α (HIF-1α) and other signal pathways.Conclusion: The coexpression pattern of miRNAs in plasma of patients with atherosclerosis is more significantly changed than that of individuals without atherosclerotic disease. MiR-106b-5p, which shows the most significant dif-ference between groups, targets multiple signal pathways in vascular endothelial cells, and might play an important role in the regulatory network of atherosclerotic gene expression.

参考文献

[1] Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004,116(2):281-297.
[2] Small EM, Olson EN . Pervasive roles of microRNAs in cardiovascular biology[J]. Nature, 2011,469(7330):336-342.
[3] Ren J, Zhang J, Xu N , et al. Signature of circulating microRNAs as potential biomarkers in vulnerable coronary artery disease[J]. PLoS One, 2013,8(12):e80738.
[4] Li P, Shen M, Gao F , et al. An antagomir to microRNA-106b-5p ameliorates cerebral ischemia and reperfusion injury in rats via inhibiting apoptosis and oxidative stress[J]. Mol Neurobiol, 2017,54(4):2901-2921.
[5] Li N, Miao Y, Shan Y , et al. MiR-106b and miR-93 regulate cell progression by suppression of PTEN via PI3K/Akt pathway in breast cancer[J]. Cell Death Dis, 2017,8(5):e2796.
[6] Wang J, Haubrock M, Cao KM , et al. Regulatory coordination of clustered microRNAs based on microRNA-transcription factor regulatory network[J]. BMC Syst Biol, 2011,5(12):199.
[7] Prieto C, Risue?o A, Fontanillo C , et al. Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles[J]. PLoS One, 2008,3(12):e3911.
[8] Zhang J, Li SF, Chen H , et al. MiR-106b-5p inhibits tumor necrosis factor-α-induced apoptosis by targeting phosphatase and tensin homolog deleted on chromosome 10 in vascular endothelial cells[J]. Chin Med J (Engl), 2016,129(12):1406-1412.
[9] Ogata H, Goto S, Sato K , et al. KEGG: Kyoto Encyclopedia of Genes and Genomes[J]. Nucleic Acids Res, 1999,27(1):29-34.
[10] Du J, Yuan Z, Ma Z , et al. KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model[J]. Mol Biosyst, 2014,10(9):2441-2447.
[11] Kanehisa M, Goto S, Sato Y , et al. KEGG for integration and interpretation of large-scale molecular data sets[J]. Nucleic Acids Res, 2012,40(Database issue):D109-114.
[12] Ross R . Atherosclerosis: an inflammatory disease[J]. N Engl J Med, 1999,340(2):115-126.
[13] 任景怡, 许宁, 韩冠平 , 等. microRNAs 参与动脉粥样硬化疾病的发生[J]. 中国生物化学与分子生物学报, 2011,27(6):511-515.
[14] Zampetaki A, Willeit P, Drozdov I , et al. Profiling of circulating microRNAs: from single biomarkers to re-wired networks[J]. Cardiovasc Res, 2012,93(4):555-562.
[15] Weber C, Noels H . Atherosclerosis: current pathogenesis and therapeutic options[J]. Nat Med, 2011,17(11):1410-1422.
[16] Zernecke A, Weber C . Chemokines in the vascular inflammatory response of atherosclerosis[J]. Cardiovasc Res, 2010,86(2):192-201.
[17] Lutgens E, Daemen MJ . Transforming growth factor-β: a local or systemic mediator of plaque stability?[J]. Circ Res, 2001,89(10):853-855.
[18] Lutgens E, Gijbels M, Smook M , et al. Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression[J]. Arterioscler Thromb Vasc Biol, 2002,22(6):975-982.
文章导航

/