Journal of Peking University (Health Sciences) ›› 2021, Vol. 53 ›› Issue (1): 109-119. doi: 10.19723/j.issn.1671-167X.2021.01.017

Previous Articles     Next Articles

Cone-beam CT evaluation of temporomandibular joint in skeletal class Ⅱ female adolescents with different vertical patterns

ZHOU Jing,LIU Yi()   

  1. Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2020-09-23 Online:2021-02-18 Published:2021-02-07
  • Contact: Yi LIU E-mail:lyortho@163.com
  • Supported by:
    Key Project of Ningxia Hui Autonomous Region Key Research and Development Program(2018BEG02012)

RICH HTML

  

Abstract:

Objective: To compare temporomandibular joint (TMJ) morphology and position among skeletal class Ⅱ female adolescents with different vertical patterns using cone-beam CT (CBCT). Methods: Diagnostic CBCT images of 80 female patients aged 11 to 14 years were assessed retrospectively. According to subspinale-nasion-supramental angle (ANB) and Frankfort horizontal plane-gonion-gnathion angle (FH-GoGn), the participants were categorized into four groups (20 subjects each), i.e. class Ⅰ normal angle (group 1, 0°≤ANB<4°, 22°≤FH-GoGn≤32°), class Ⅱ low (group 2, ANB≥4°, FH-GoGn<22°), normal (group 3, ANB≥4°, 22°≤FH-GoGn≤32°) and high angle (group 4, ANB≥4°, FH-GoGn>32°). Cephalometrics, morphology and position of TMJ were measured in Dolphin software. Using paired-samples t test to analyze TMJ symmetry, One-way analysis of variance (One-way ANOVA) and Chi-square tests to detect differences among the groups. The correlations between cephalometrics and TMJ measurements were also analysed within the skeletal class Ⅱ patients.Results: (1) Analysing TMJ morphologic symmetry, some measurements differed statistically although the mean diffe-rences were negligibly relative to their values. No statistically significant difference was found among the groups though group 4 showed the highest probability of condylar position asymmetry (65%). (2) Comparing group 1 with group 3, statistical difference was found in condylar position (χ2=6.936, P<0.05) instead of morphologic measurements. Anterior and concentric condylar position were more frequently observed in group 1, yet posterior position was more prevalent in group 3. (3) In groups 2, 3, and 4, statistically, group 2 had the deepest glenoid fossa depth (H2&4=10.517,P=0.002), biggest superior (LSD-t2&3=3.408, LSD-t2&4=5.369, P<0.001) and lateral (LSD-t2&3=2.767, LSD-t2&4=3.350, P=0.001) joint spaces, whereas group 4 showed the shortest condylar long axis diameter (H2&4=13.374, P<0.001), largest glenoid fossa vertical distance (LSD-t2&4=4.561, P<0.001, LSD-t3&4=2.713, P=0.007), smallest medial (LSD-t2&4=-4.083, P<0.001) and middle (LSD-t2&4=-4.201, P<0.001) joint spaces. The posterior condylar position proportion gradually increased from groups 2 to 3 to 4. Correlation analysis revealed ANB correlated with anterior joint space positively (r=0.270, P=0.037) and condylar long axis angle negatively (r=-0.296, P=0.022). FH-GoGn correlated with superior (r=-0.488, P<0.001), posterior (r= -0.272, P=0.035), mesial (r=-0.390, P=0.002), middle (r=-0.425, P=0.001), and lateral (r=-0.331, P=0.010) joint spaces, articular eminence inclination (r=-0.259, P=0.046), as well as condylar long axis diameter (r=-0.327, P=0.011) negatively, and glenoid fossa depth (r=0.370, P=0.004) positively. Conclusion: TMJ characteristics of skeletal class Ⅱ sagittal pattern mainly reflected in condylar position rather than morphology. TMJs of different vertical patterns differed more in joint spaces, position of condyle and glenoid fossa than in morphologic measurements. Vertical position of glenoid fossa and proportion of posterior condyle increased gradually from hypodivergent to hyperdivergent. Highest glenoid fossa position, maximum ratio of posterior positioned condyle, smallest joint spaces, shallowest glenoid fossa depth, and narrowest condylar long axis diameter were found in skeletal class Ⅱ high angle group, which means that patients with this facial type have considerable joint instable factors, and we should especially pay attention when orthodontic treatment is carried out on them.

Key words: Temporomandibular joint, Cone-beam computed tomography, Skeletal class Ⅱ, Vertical skeletal pattern, Adolescent

CLC Number: 

  • R783.5

Figure 1

a: Frankfort horizontal plane (FH plane) parallel to horizontal plane;b: Mid-sagittal plane passed through anterior nasal spine (ANS) point and basion (Ba) point"

Figure 2

Construction of landmarks used in cephalometric analysis and angular measurements ∠1, sella-nasion-supramental angle (SNB); ∠2, sella-nasion-subspinale angle (SNA); ∠3, subspinale-nasion-supramental angle (ANB); ∠4, Frankfort horizontal plane-gonion-gnathion angle (FH-GoGn). S, sella; P, porion; N, nasion; O, orbitale; A, subspinale; B, supramental; Co, superior point of the condyle; Go, gonion; Gn, gnathion."

Figure 3

Landmarks and measurements of sagittal projection of ascending rami Co, superior point of the condyle; Cc, the center of the largest circle which fit the condylar head arc; Sg, inferior point of the mandibular sigmoid incisure; Cm, the intersection of the horizontal line passing Sg point and L2, which passing Cc point and parallel to the tangent of condylar posterior border. L1, distance between Co point and Cc point; L2, distance between Cc and Cm; L3, condylar height, the vertical distance between Co and Sg; Condylar length, L1 plus L2. ∠1, condylar neck inclination (Cni): posterior superior angle between tangent line of condyle posterior border and horizontal line; ∠2, condylar head angle: angle between condylar head and neck, i.e., anterior angle between L1 and L2."

Figure 4

Measurements on the largest axial view of the condyle ∠1, condylar long axis angle: the angle between condylar mediolateral axis and mid-sagittal plane. L1, condylar long axis diameter: the largest mediolateral diameter of condyle; L2, condylar short axis diameter: the largest anteroposterior diameter of condyle, which perpendicular to L1."

Figure 5

Mid-sagittal plane (a) and Mid-coronal plane (b) of the condyle Ei, inferior point of the articular eminence; Fs, superior point of the glenoid fossa; Fp, the intersection of posterior slope of glenoid fossa and a line which parallel to the Frankfort horizontal (FH) plane as well as passing through Ei point. When posterior slope shorter than the anterior, use the inferior point of it. ∠1, articular eminence inclination (Aei): angle between the best fit line of the posterior slope of articular eminence and the horizontal plane. L1, glenoid fossa depth; L2, glenoid fossa width. A, anterior joint space: the shortest distance from the most prominent anterior point of the condyle to corresponding glenoid fossa bone; S, superior joint space: the shortest distance from the most superior point of the condyle to Fs point; P, posterior joint space: the shortest distance from the most prominent posterior point of the condyle to corresponding glenoid fossa bone. Mis, middle joint space, the shortest distance from the condylar most superior point to corresponding glenoid fossa bone; Mes, medial joint space, the shortest distance from the middle point of the condylar most medial and superior point to corresponding glenoid fossa bone; Las, lateral joint space, the shortest distance from the middle point of the condylar most lateral and superior point to corresponding glenoid fossa bone."

Figure 6

Location of glenoid fossa centre point and its’ vertical distance measurement (a, b); Locate sella point on the mid-sagittal plane,and orientate coronal plane through it (c); Coronal and sagittal distance measurements on axial view (d) Fc, glenoid fossa centre point, the most superior point of glenoid fossa on sagittal and coronal plane; S, sella point. L1, glenoid fossa vertical distance, the vertical distance between Fc point and Frankfort horizontal (FH) plane, positive when Fc is higher; L2, glenoid fossa sagittal distance, the sagittal projection distance of Fc point to S point; L3, glenoid fossa coronal distance, the distance of Fc point to mid-sagittal plane."

Table 1

Age and cephalometric measurements distribution of subjects among groups"

Variable Group 1 Group 2 Group 3 Group 4
Age/months, x-±s 154.20±10.07 152.55±12.70 153.20±12.03 151.65±11.47
ANB/(°), x-±s 2.51±1.01#△§ 4.98±0.89 5.43±1.21* 6.36±1.48*#
FH-GoGn/(°), x-±s 26.18±2.10△§ 19.47±2.74*△§ 27.06±2.20 33.71±1.89*#△

Table 2

Paired-samples t test of right and left sides in each group (right minus left, x-±s)"

Measurements Group 1 Group 2 Group 3 Group 4
Condylar length/mm -0.72±1.30* -0.10±1.35 -0.29±1.50 -0.31±1.45
Condylar height/mm -0.50±1.12 -0.12±1.38 -0.22±1.36 -0.51±1.43
Condylar neck inclination/(°) 1.88±4.17 -0.91±4.20 1.72±3.67* -0.60±3.90
Condylar head angle/(°) -1.51±7.10 -2.23±11.13 -1.95±12.44 -4.60±9.72*
Anterior joint space/mm -0.04±0.40 -0.16±0.46 -0.26±0.47* -0.21±0.49
Superior joint space/mm -0.08±0.47 -0.12±0.55 0.03±0.36 -0.01±0.70
Posterior joint space/mm 0.11±0.38 0.01±0.38 0.13±0.42 0.16±0.60
Glenoid fossa width/mm -0.11±1.96 0.45±1.23 0.41±1.37 -0.18±1.36
Glenoid fossa depth/mm 0.14±0.92 0.06±0.64 0.24±0.72 -0.27±0.74
Articular eminence inclination/(°) 3.16±8.46 -4.24±7.55* -3.01±6.28* -6.40±7.84*
Mesial joint space/mm -0.07±0.52 -0.11±0.55 0.10±0.55 -0.06±0.51
Middle joint space/mm -0.14±0.63 -0.02±0.60 0.02±0.54 -0.43±0.63*
Lateral joint space/mm -0.05±0.68 -0.09±0.52 -0.07±0.74 -0.03±0.62
Condylar long axis diameter/mm 0.05±1.12 0.36±0.95 0.22±1.50 -0.04±1.53
Condylar short axis diameter/mm 0.10±0.56 0.35±0.82 0.30±0.75 0.23±0.87
Glenoid fossa vertical distance/mm -0.15±0.95 -0.13±0.88 0.77±0.87** 0.00±0.75
Glenoid fossa coronal distance/mm 1.22±2.32* 1.73±2.37* 1.11±1.86* 1.25±2.04*
Glenoid fossa sagittal distance/mm -0.31±1.95 0.69±1.36* 0.22±1.16 0.27±2.21
Condylar long axis angle/(°) -0.19±7.56 -2.58±4.59* -1.53±7.25 -0.98±7.44

Table 3

Symmetry analysis of condylar position in each group [side (%)]"

Condylar position Group 1 Group 2 Group 3 Group 4
Symmetrical 10 (50) 13 (65) 12 (60) 7 (35)
Asymmetrical 10 (50) 7 (35) 8 (40) 13 (65)

Table 4

Comparison of measurements differences among groups (x-±s)"

Measurements Group 1 Group 2 Group 3 Group 4
Condylar length/mm 17.30±1.92 17.16±2.43 17.40±2.46 17.39±1.77
Condylar height/mm 16.48±1.76 16.39±2.42 16.54±2.39 16.63±1.76
Condylar neck inclination/(°) 73.48±6.07 73.23±6.01 72.46±4.95 73.99±6.47
Condylar head angleks/(°) 151.56±7.96 154.12±13.95 150.99±9.54 154.26±10.15
Anterior joint space/mm 1.55±0.56 1.71±0.40 1.56±0.54 1.82±0.60
Superior joint space/mm 2.23±0.63# 2.91±0.77*△§ 2.38±0.64# 2.07±0.74#
Posterior joint space/mm 1.65±0.48 1.68±0.48 1.54±0.42 1.49±0.46
Glenoid fossa width/mm 17.35±2.08 17.41±1.52 1.54±0.42 17.07±1.78
Glenoid fossa depthks/mm 6.62±1.33 7.37±1.03§ 6.85±0.96 6.50±1.15#
Articular eminence inclination/(°) 49.62±11.76 53.24±9.09 51.47±8.46 49.43±11.34
Mesial joint space/mm 2.11±0.62# 2.50±0.74 2.24±0.60 1.91±0.62#
Middle joint space/mm 2.26±0.72 2.61±0.73§ 2.33±0.67 1.94±0.73#
Lateral joint space/mm 2.09±0.61 2.34±0.52△§ 1.96±0.66# 1.88±0.66#
Condylar long axis diameterks/mm 16.99±2.61 17.37±1.76§ 16.47±1.85 15.54±2.51#
Condylar short axis diameter/mm 7.73±1.01 7.85±1.14 7.53±0.89 7.55±1.00
Glenoid fossa vertical distance/mm 2.63±1.42# 1.53±1.36 2.09±1.27§ 2.90±1.32#*
Glenoid fossa coronal distance/mm 49.02±2.44 48.56±1.87 48.74±2.08 48.59±2.40
Glenoid fossa sagittal distanceks/mm 9.65±3.12 9.60±3.11 10.16±2.09 9.67±2.76
Condylar long axis angleks/(°) 68.24±8.43 68.15±5.38 67.36±7.72 65.79±9.03

Table 5

Analysis of correlation between temporomandibular joint measurements and cepholometric values in skeletal class Ⅱ patients"

Variables ANB (n=60) FH-GoGn (n=60)
r P r P
Condylar length -0.245 0.059 0.091 0.491
Condylar height -0.228 0.080 0.091 0.487
Condylar neck inclination 0.074 0.572 0.038 0.771
Condylar head angle 0.143 0.275 -0.024 0.853
Anterior joint space 0.270 0.037* 0.037 0.778
Superior joint space -0.145 0.270 -0.488 <0.001**
Posterior joint space -0.196 0.133 -0.272 0.035*
Glenoid fossa width -0.114 0.386 -0.101 0.443
Glenoid fossa depth -0.130 0.321 -0.363 0.004**
Articular eminence inclination 0.120 0.363 -0.259 0.046*
Mesial joint space -0.149 0.256 -0.390 0.002**
Middle joint space -0.144 0.271 -0.425 0.001**
Lateral joint space -0.115 0.383 -0.331 0.010*
Condylar long axis diameter -0.154 0.240 -0.327 0.011*
Condylar short axis diameter -0.240 0.065 -0.143 0.276
Glenoid fossa vertical distance 0.161 0.220 0.370 0.004**
Glenoid fossa coronal distance 0.050 0.706 0.051 0.697
Glenoid fossa sagittal distance -0.170 0.193 -0.163 0.214
Condylar long axis angle -0.296 0.022* -0.211 0.105

Table 6

Distribution of condylar position in each group [side (%)]"

Condylar position Group 1 Group 2 Group 3 Group 4
Anterior 11 (27.5) 4 (10.0) 14 (35.0) 6 (15.0)
Concentric 22 (55.0) 25 (62.5) 11 (27.5) 16 (40.0)
Posterior 7 (17.5) 11 (27.5) 15 (37.5) 18 (45.0)
[1] Bjork A. Facial growth in man, studied with the aid of metallic implants[J]. Acta Odontol Scand, 1955,13(1):9-34.
doi: 10.3109/00016355509028170 pmid: 14398173
[2] Copray JC, Dibbets JM, Kantomaa T. The role of condylar cartilage in the development of the temporomandibular joint[J]. Angle Orthod, 1988,58(4):369-380.
pmid: 3061315
[3] Weinberg LA. Correlation of temporomandibular dysfunction with radiographic findings[J]. J Prosthet Dent, 1972,28(5):519-539.
doi: 10.1016/0022-3913(72)90064-9 pmid: 4507574
[4] Ahn SJ, Lee SJ, Kim TW. Orthodontic effects on dentofacial morphology in women with bilateral TMJ disk displacement[J]. Angle Orthod, 2007,77(2):288-295.
pmid: 17319764
[5] McNamara JA Jr. Components of class Ⅱ malocclusion in children 8-10 years of age[J]. Angle Orthod, 1981,51(3):177-202.
doi: 10.1043/0003-3219(1981)051<0177:COCIMI>2.0.CO;2 pmid: 7023290
[6] Simmons 3rd HC, Oxford DE, Hill MD. The prevalence of skeletal Class Ⅱ patients found in a consecutive population presenting for TMD treatment compared to the national average[J]. J Tenn Dent Assoc, 2008,88(4):16-18.
pmid: 19248341
[7] Lin M, Xu Y, Wu H, et al. Comparative cone-beam computed tomography evaluation of temporomandibular joint position and morphology in female patients with skeletal class Ⅱ malocclusion[J]. J Int Med Res, 2019,48(2):0300060519892388.
[8] Hasebe A, Yamaguchi T, Nakawaki T, et al. Comparison of condylar size among different anteroposterior and vertical skeletal patterns using cone-beam computed tomography[J]. Angle Orthod, 2019,89(2):306-311.
doi: 10.2319/032518-229.1 pmid: 30475648
[9] Ma Q, Bimal P, Mei L, et al. Temporomandibular condylar morphology in diverse maxillary-mandibular skeletal patterns: A 3-dimensional cone-beam computed tomography study[J]. J Am Dent Assoc, 2018,149(7):589-598.
doi: 10.1016/j.adaj.2018.02.016 pmid: 29655707
[10] Pullinger A, Hollender L. Variation in condyle-fossa relationships according to different methods of evaluation in tomograms[J]. Oral Surg Oral Med Oral Pathol, 1986,62(6):719-727.
doi: 10.1016/0030-4220(86)90270-7 pmid: 3467295
[11] Ocak M, Sargon MF, Orhan K, et al. Evaluation of the anatomical measurements of the temporomandibular joint by cone-beam computed tomography[J]. Folia Morphol, 2019,78(1):174-181.
[12] Tsiklakis K, Syriopoulos K, Stamatakis HC. Radiographic examination of the temporomandibular joint using cone beam computed tomography[J]. Dentomaxillofac Radiol, 2004,33(3):196-201.
doi: 10.1259/dmfr/27403192 pmid: 15371321
[13] Firetto MC, Abbinante A, Barbato E, et al. National guidelines for dental diagnostic imaging in the developmental age[J]. Radiol Med, 2019,124(9):887-916.
doi: 10.1007/s11547-019-01038-4 pmid: 31055724
[14] Bjork A. Variations in the growth pattern of the human mandible: Longitudinal radiographic study by the implant method[J]. J Dent Res, 1963,42(1):400-411.
[15] Lobo F, Tolentino ES, Iwaki LCV, et al. Imaginology tridimensional study of temporomandibular joint osseous components according to sagittal skeletal relationship, sex, and age[J]. J Craniofac Surg, 2019,30(5):1462-1465.
doi: 10.1097/SCS.0000000000005467 pmid: 31299744
[16] Al-koshab M, Nambiar P, John J. Assessment of condyle and glenoid fossa morphology using CBCT in South-East Asians[J]. PLoS One, 2015,10(3):e0121682.
doi: 10.1371/journal.pone.0121682 pmid: 25803868
[17] Coombs MC, She X, Brown T R, et al. Temporomandibular joint condyle-disc morphometric sexual dimorphisms independent of skull scaling[J]. J Oral Maxillofac Surg, 2019,77(11):2245-2257.
doi: 10.1016/j.joms.2019.04.022 pmid: 31125537
[18] Weinberg LA. Role of condylar position in TMJ dysfunction-pain syndrome[J]. J Prosthet Dent, 1979,41(6):636-643.
doi: 10.1016/0022-3913(79)90062-3 pmid: 286056
[19] 葛胜将. 不同骨性错牙合患者髁突形态及位置的CBCT研究[D]. 青岛: 青岛大学, 2015.
[20] 韩晓利. 成年女性骨性Ⅱ错牙合不同垂直骨面型患者TMJ骨性结构特征的CBCT研究[D]. 天津: 天津医科大学, 2017.
[21] 崔燕, 唐天琪, 刘琳. 不同矢状骨面型患者颞下颌关节形态特征锥形束CT研究[J]. 中国实用口腔科杂志, 2016,9(6):348-353.
[22] Saccucci M, Polimeni A, Festa F, et al. Do skeletal cephalometric characteristics correlate with condylar volume, surface and shape? A 3D analysis[J]. Head Face Med, 2012,8:15.
doi: 10.1186/1746-160X-8-15 pmid: 22587445
[23] Katayama K, Yamaguchi T, Sugiura M, et al. Evaluation of mandibular volume using cone-beam computed tomography and correlation with cephalometric values[J]. Angle Orthod, 2014,84(2):337-342.
doi: 10.2319/012913-87.1 pmid: 23985034
[24] Paknahad M, Shahidi S, Abbaszade H. Correlation between condylar position and different sagittal skeletal facial types[J]. J Orofac Orthop, 2016,77(5):350-356.
doi: 10.1007/s00056-016-0039-z pmid: 27357584
[25] Nielsen IL. Vertical malocclusions: etiology, development, diagnosis and some aspects of treatment[J]. Angle Orthod, 1991,61(4):247-260.
doi: 10.1043/0003-3219(1991)061<0247:VMEDDA>2.0.CO;2 pmid: 1763835
[26] Droel R, Isaacson RJ. Some relationships between the glenoid fossa position and various skeletal discrepancies[J]. Am J Orthod, 1972,61(1):64-78.
doi: 10.1016/0002-9416(72)90177-7 pmid: 4500188
[27] Costa EDD, Peyneau PD, Roque-Torres GD, et al. The relationship of articular eminence and mandibular fossa morphology to facial profile and gender determined by cone beam computed tomography[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2019,128(6):660-666.
doi: 10.1016/j.oooo.2019.07.007 pmid: 31494114
[28] Kurusu A, Horiuchi M, Soma K. Relationship between occlusal force and mandibular condyle morphology. Evaluated by limited cone-beam computed tomography[J]. Angle Orthod, 2009,79(6):1063-1069.
doi: 10.2319/120908-620R.1 pmid: 19852595
[29] Burke G, Major P, Glover K, et al. Correlations between condylar characteristics and facial morphology in Class Ⅱ preadolescent patients[J]. Am J Orthod Dentofacial Orthop, 1998,114(3):328-336.
doi: 10.1016/s0889-5406(98)70216-1 pmid: 9743139
[30] 李晨. 不同垂直骨面型骨性Ⅱ类成年女性颞下颌关节骨性结构的三维分析[D]. 西安: 第四军医大学, 2016.
[31] Goymen M, Gulec A. Effects of the vertical malocclusion types on the dimension of the mandibular condyle[J]. Turk J Orthod, 2017,30(4):106-109.
doi: 10.5152/TurkJOrthod.2017.17029 pmid: 30112501
[32] 车蓓, 张昊, 钱才梅, 等. 不同垂直骨面型安氏Ⅱ类1分类错牙合患者颞下颌关节三维形态结构的比较[J]. 中华口腔医学杂志, 2014,49(7):399-402.
[33] Celik S, Celikoglu M, Buyuk SK, et al. Mandibular vertical asymmetry in adult orthodontic patients with different vertical growth patterns: A cone beam computed tomography study[J]. Angle Orthod, 2016,86(2):271-277.
doi: 10.2319/030515-135.1 pmid: 26065465
[34] Kikuchi K, Takeuchi S, Tanaka E, et al. Association between condylar position, joint morphology and craniofacial morphology in orthodontic patients without temporomandibular joint disorders[J]. J Oral Rehabil, 2003,30(11):1070-1075.
doi: 10.1046/j.1365-2842.2003.01194.x pmid: 14641670
[35] Paknahad M, Shahidi S. Association between condylar position and vertical skeletal craniofacial morphology: a cone beam computed tomography study[J]. Int Orthod, 2017,15(4):740-751.
doi: 10.1016/j.ortho.2017.09.008 pmid: 29111128
[36] Park IY, Kim JH, Park YH. Three-dimensional cone-beam computed tomography based comparison of condylar position and morphology according to the vertical skeletal pattern[J]. Korean J Orthod, 2015,45(2):66-73.
doi: 10.4041/kjod.2015.45.2.66 pmid: 25798412
[1] Shishi BO,Chengzhi GAO. Tooth segmentation and identification on cone-beam computed tomography with convolutional neural network based on spatial embedding information [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 735-740.
[2] Hejun SHEN,Chongyan SHI,Qing ZHENG,Yu HUANG,Tao JING. Investigation on the current situation and influencing factors of sitting time and health literacy among high school students in China [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 239-246.
[3] Hongguang LI,Weihua HAN,Xun WU,Jiling FENG,Gang LI,Juanhong MENG. Preliminarily study of arthrocentesis combined with liquid phase concentrated growth factor injection in the treatment of unilateral temporomandibular joint osteoarthritis [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 338-344.
[4] Bochun MAO,Yajing TIAN,Xuedong WANG,Jing LI,Yanheng ZHOU. Soft and hard tissue changes of hyperdivergent class Ⅱ patients before and after orthodontic extraction treatment [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 111-119.
[5] Xiaotong LING,Liuyang QU,Danni ZHENG,Jing YANG,Xuebing YAN,Denggao LIU,Yan GAO. Three-dimensional radiographic features of calcifying odontogenic cyst and calcifying epithelial odontogenic tumor [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 131-137.
[6] Deng-hui DUAN,Hom-Lay WANG,En-bo WANG. Role of collagen membrane in modified guided bone regeneration surgery using buccal punch flap approach: A retrospective and radiographical cohort study [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 1097-1104.
[7] Meng-jie CUI,Qi MA,Man-man CHEN,Tao MA,Xin-xin WANG,Jie-yu LIU,Yi ZHANG,Li CHEN,Jia-nuo JIANG,Wen YUAN,Tong-jun GUO,Yan-hui DONG,Jun MA,Yi XING. Association between different growth patterns and metabolic syndrome in children and adolescents aged 7 to 17 years [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 415-420.
[8] Jia-jia DANG,Shan CAI,Pan-liang ZHONG,Ya-qi WANG,Yun-fei LIU,Di SHI,Zi-yue CHEN,Yi-hang ZHANG,Pei-jin HU,Jing LI,Jun MA,Yi SONG. Association of outdoor artificial light at night exposure with overweight and obesity among children and adolescents aged 9 to 18 years in China [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 421-428.
[9] Dan-feng ZHENG,Jun-yu LI,Jia-xi LI,Ying-shuang ZHANG,Yan-feng ZHONG,Miao YU. Pathologic features of paraspinal muscle biopsies in patients with adolescent idiopathic scoliosis [J]. Journal of Peking University (Health Sciences), 2023, 55(2): 283-291.
[10] Jin-hua ZHANG,Jie PAN,Zhi-peng SUN,Xiao WANG. Effect of various intracanal materials on the diagnostic accuracy of cone-beam computed tomography in vertical root fractures [J]. Journal of Peking University (Health Sciences), 2023, 55(2): 333-338.
[11] Jia-xue YE,Yu-hong LIANG. A prevalence survey of cone-beam computed tomography use among endodontic practitioners [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 114-119.
[12] Meng-qiao PAN,Jian LIU,Li XU,Xiao XU,Jian-xia HOU,Xiao-tong LI,Xiao-xia WANG. A long-term evaluation of periodontal phenotypes before and after the periodontal-orthodontic-orthognathic combined treatment of lower anterior teeth in patients with skeletal Angle class Ⅲ malocclusion [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 52-61.
[13] Yu FU,Xin-nong HU,Sheng-jie CUI,Jie SHI. Decompensation effectiveness and alveolar bone remodeling analysis of mandibular anterior teeth after preoperative orthodontic treatment in high-angle patients with skeletal class Ⅱ malocclusion [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 62-69.
[14] Juan GAO,Hang-miao LV,Hui-min MA,Yi-jiao ZHAO,Xiao-tong LI. Evaluation of root resorption after surgical orthodontic treatment of skeletal Class Ⅲ malocclusion by three-dimensional volumetric measurement with cone-beam CT [J]. Journal of Peking University (Health Sciences), 2022, 54(4): 719-726.
[15] Yun-fei LIU,Jia-jia DANG,Pan-liang ZHONG,Ning MA,Di SHI,Yi SONG. Injury mortality among Chinese aged 5 to 24 years from 1990 to 2019 [J]. Journal of Peking University (Health Sciences), 2022, 54(3): 498-504.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!