北京大学学报(医学版) ›› 2019, Vol. 51 ›› Issue (2): 197-205. doi: 10.19723/j.issn.1671-167X.2019.02.001
• 论著 • 下一篇
孙智明1,陈倩1,李明华1,马维宁2,赵旭阳1,3,∆(),黄卓1,∆()
Zhi-ming SUN1,Qian CHEN1,Ming-hua LI1,Wei-ning MA2,Xu-yang ZHAO1,3,∆(),Zhuo HUANG1,∆()
摘要:
目的: 探究小鼠颞叶癫痫慢性发作期蛋白质功能和信号通路的改变。方法: (1)制备小鼠卡英酸颞叶癫痫模型,行为学达到Racine分级4分判定为造模成功。28 d后,取对照组和实验组小鼠海马组织进行磷酸化蛋白组学实验;(2) 选取检出密度大于10 6的数据进行统计分析;(3)利用GO(Gene Ontology)数据库、KEGG(Kyoto Encyclopedia of Genes and Genomes)数据库和STRING数据库对磷酸化蛋白组学数据进行统计分析;(4)结合文献对组学结果进行分析。 结果: (1)质谱共检测出12 697个蛋白质磷酸化位点,其中159个位点变化差异具有统计学意义(P<0.05);(2)在蛋白质功能层面,磷酸化水平显著性变化的蛋白质的分子功能主要是结合(39.5%)和催化活性(35.7%), 这些蛋白质参与细胞交流(20.8%)、初级代谢和含磷酸盐化合物代谢等生化过程;(3)在信号通路层面,这些蛋白质参与10条信号转导通路,包括谷氨酸能突触信号通路、Ras信号通路、长时程增强信号通路等;(4)在蛋白质相互作用层面,这些蛋白质形成以Grin1和Dlg3为核心,以Arhgef 2、Arhgap33和Tiam1为核心与以Spnb1/3/4、Add3和Ank2为核心的蛋白质相互作用网;(5)磷酸化蛋白组学数据显示,Grin1、Arhgef2、Arhgap33、Tiam1、Sptbn1/2/4和Ank2等磷酸化水平在癫痫慢性发作期显著升高。结论: 磷酸化蛋白组学的结果从蛋白质功能、信号通路和蛋白质相互作用3个层面阐明了小鼠颞叶癫痫慢性发作期海马体蛋白质的变化,验证了磷酸化蛋白组学研究的可靠性,并提示多巴胺功能和Kir3.1钾通道功能可能与癫痫发生相关。
中图分类号:
[1] | 郭铭花, 张敬军 . 癫痫流行病学调查研究[J]. 中华脑科疾病与康复杂志: 电子版, 2013,3(5):46-48. |
[2] |
Hesdorffer DC, Tomson T . Sudden unexpected death in epilepsy. Potential role of antiepileptic drugs[J]. CNS Drugs, 2013,27(2):113-119.
doi: 10.1007/s40263-012-0006-1 |
[3] | 佟晓燕, 王玉平 . 成年癫痫患者抑郁、焦虑状况及生活质量调查[J]. 脑与神经疾病杂志, 2009,17(2):123-126. |
[4] |
Brodie MJ, Kwan P . Newer drugs for focal epilepsy in adults[J]. BMJ, 2012,344:e345.
doi: 10.1136/bmj.e345 |
[5] |
Schmidt D, Sillanpää M . Evidence-based review on the natural history of the epilepsies[J]. Curr Opin Neurol, 2012,25(2):159.
doi: 10.1097/WCO.0b013e3283507e73 |
[6] |
Palleria C, Coppola A, Citraro R , et al. Perspectives on treatment options for mesial temporal lobe epilepsy with hippocampal sclerosis[J]. Expert Opin Pharmacother, 2015,16(15):2355.
doi: 10.1517/14656566.2015.1084504 |
[7] |
Williams AD, Jung S, Poolos NP . Protein kinase C bidirectionally modulates Ih and hyperpolarization-ctivated cyclic nucleotide-ated (HCN) channel surface expression in hippocampal pyramidal neurons[J]. J Physiol, 2015,593(13):2779-2792.
doi: 10.1113/JP270453 |
[8] |
Takeichi M . Stability of dendritic spines and synaptic contacts is controlled by aN-catenin[J]. Nat Neurosci, 2004,7(4):357-363.
doi: 10.1038/nn1212 |
[9] |
Togashi H, Abe K, Mizoguchi A , et al. Cadherin regulates dendritic spine morphogenesis[J]. Neuron, 2002,35(1):77-89.
doi: 10.1016/S0896-6273(02)00748-1 |
[10] |
Park C, Falls W, Finger JH , et al. Deletion in Catna2, encoding alpha N-catenin, causes cerebellar and hippocampal lamination defects and impaired startle modulation[J]. Nat Genet, 2002,31(3):279-284.
doi: 10.1038/ng908 |
[11] |
Huang C, Fu XH, Zhou D , et al. The role of Wnt/β-catenin signaling pathway in disrupted hippocampal neurogenesis of temporal lobe epilepsy: a potential therapeutic target[J]. Neurochem Res, 2015,40(7):1319.
doi: 10.1007/s11064-015-1614-1 |
[12] | Tóth K, Maglóczky Z . The vulnerability of calretinin-containing hippocampal interneurons to temporal lobe epilepsy[J]. Front Neuroanat, 2014,8:100. |
[13] |
Hardies K, Cai Y, Jardel C , et al. Loss of SYNJ1 dual phosphatase activity leads to early onset refractory seizures and progressive neurological decline[J]. Brain, 2016,139(9):2420-2430.
doi: 10.1093/brain/aww180 |
[14] |
Milosevic I, Giovedi S, Lou X , et al. Recruitment of endophilin to clathrin coated pit necks is required for efficient vesicle uncoating after fission[J]. Neuron, 2011,72(4):587-601.
doi: 10.1016/j.neuron.2011.08.029 |
[15] |
Di PG, Sankaranarayanan S, Wenk MR , et al. Decreased synaptic vesicle recycling efficiency and cognitive deficits in amphiphysin 1 knockout mice[J]. Neuron, 2002,33(5):789-804.
doi: 10.1016/S0896-6273(02)00601-3 |
[16] |
Eid T, Tu N, Lee TS , et al. Regulation of astrocyte glutamine synthetase in epilepsy[J]. Neurochem Int, 2013,63(7):670-681.
doi: 10.1016/j.neuint.2013.06.008 |
[17] |
Cerfontain H, Telder MA, Vollbracht L . Inborn error of amino acid synjournal: human glutamine synthetase deficiency[J]. J Inherit Metab Dis, 2006,29(2/3):352.
doi: 10.1007/s10545-006-0256-5 |
[18] |
Upreti C, Otero R, Partida C , et al. Altered neurotransmitter release, vesicle recycling and presynaptic structure in the pilocarpine model of temporal lobe epilepsy[J]. Brain, 2012,135(Pt 3):869-885.
doi: 10.1093/brain/awr341 |
[19] |
Putkonen N, Kukkonen JP, Mudo G , et al. Involvement of cyclin-dependent kinase-5 in the kainic acid-mediated degeneration of glutamatergic synapses in the rat hippocampus[J]. Eur J Neurosci, 2011,34(8):1212-1221.
doi: 10.1111/j.1460-9568.2011.07858.x |
[20] | Dingledine R . Glutamatergic mechanisms related to epilepsy: ionotropic receptors[J]. 2010,51(s5):15. |
[21] |
Kulik A . Compartment-dependent colocalization of Kir3.2-con-taining K+ channels and GABAB receptors in hippocampal pyramidal cells[J]. J Neurosci, 2006,26(16):4289.
doi: 10.1523/JNEUROSCI.4178-05.2006 |
[22] | Tonini R, Franceschetti S, Parolaro D , et al. Involvement of CDC25Mm/Ras-GRF1-dependent signaling in the control of neuronal excitability[J]. Mol Cell Neurosci, 2002,18(6):691-701. |
[23] |
Zhu Q, Wang L, Xiao Z , et al. Decreased expression of Ras-GRF1 in the brain tissue of the intractable epilepsy patients and experimental rats[J]. Brain Res, 2013,1493(1):99-109.
doi: 10.1016/j.brainres.2012.11.033 |
[24] |
Moschovos C, Kostopoulos G, Papatheodoropoulos C . Long-term potentiation of high-frequency oscillation and synaptic transmission characterize in vitro NMDA receptor-dependent epileptogenesis in the hippocampus[J]. Neurobiol Dis, 2008,29(2):368.
doi: 10.1016/j.nbd.2007.09.007 |
[25] | Lenz M, Ben SM, Deller T , et al. Pilocarpine-induced status epilepticus is associated with changes in the actin-modulating protein synaptopodin and alterations in long-term potentiation in the mouse hippocampus[J]. Neural Plast, 2017,2017:2652560. |
[26] |
Liu JX, Hu M, Chen XL , et al. Reducedexpression of phospholipase C beta in hippocampal interneuron during pilocarpine induced status epilepticus in mice[J]. Neurochem Int, 2014,68(1):10.
doi: 10.1016/j.neuint.2014.01.009 |
[27] |
Kurian MA, Meyer E, Vassallo G , et al. Phospholipase C beta 1 deficiency is associated with early-onset epileptic encephalopathy[J]. Brain, 2010,133(10):2964-2970.
doi: 10.1093/brain/awq238 |
[28] |
Chen W, Yuan H . GRIN1 mutations in early-onset epileptic encephalopathy[J]. Pediatr Neurol Briefs, 2015,29(6):44.
doi: 10.15844/pedneurbriefs-29-6 |
[29] |
Mikuni N, Babb TL, Chakravarty DN , et al. NMDAR2 upregulation precedes mossy fiber sprouting in kainate rat hippocampal epilepsy[J]. Neurosci Lett, 1998,255(1):25.
doi: 10.1016/S0304-3940(98)00704-6 |
[30] |
Buckmaster PS . Does mossy fiber sprouting give rise to the epileptic state[J]. Adv Exp Med Biol, 2014,813:161-168.
doi: 10.1007/978-94-017-8914-1 |
[31] |
Brouns MR, Matheson SF , Settleman J. p190 RhoGAP is the principal Src substrate in brain and regulates axon outgrowth, guidance and fasciculation[J]. Nat Cell Biol, 2001,3(4):361-367.
doi: 10.1038/35070042 |
[32] | Stankiewicz TR, Linseman DA . Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration[J]. Front Cell Neurosci, 2014,8:314. |
[33] |
Rocha L, Alonso-Vanegas M, Villeda-Hernandez J , et al. Dopamine abnormalities in the neocortex of patients with temporal lobe epilepsy[J]. Neurobiol Dis, 2012,45(1):499-507.
doi: 10.1016/j.nbd.2011.09.006 |
[34] |
Kaupmann K, Schuler V, Mosbacher J , et al. Human γ-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+ channels[J]. Proc Natl Acad Sci USA, 1998,95(25):14991-14996.
doi: 10.1073/pnas.95.25.14991 |
[1] | 朱莎,徐宗胜,夏晴,方筱静,赵丹华,刘献增. 伴杏仁核肥大的颞叶癫痫的临床及病理特征[J]. 北京大学学报(医学版), 2019, 51(5): 824-828. |
|