北京大学学报(医学版) ›› 2020, Vol. 52 ›› Issue (2): 221-226. doi: 10.19723/j.issn.1671-167X.2020.02.005
覃鸿泉1,2,郑幽2,王嫚娜2,张峥嵘2,牛祖彪2,马骊1,孙强2,黄红艳3,△(),王小宁1,△()
Hong-quan QIN1,2,You ZHENG2,Man-na WANG2,Zheng-rong ZHANG2,Zu-biao NIU2,Li MA1,Qiang SUN2,Hong-yan Huang3,△(),Xiao-ning WANG1,△()
摘要:
目的 对免疫相关GTP结合蛋白2(GTPase of immunity-associated protein 2,GIMAP2)进行亚细胞定位分析,为深入研究GIMAP2蛋白的功能奠定基础.方法: 使用国家生物技术信息中心(National Center for Biotechnology Information,NCBI)数据库查询获取GIMAP2的蛋白序列,再利用生物信息学在线分析工具对GIMAP2蛋白的跨膜结构,核定位信号(nuclear localization signal,NLS),核输出信号(nuclear export signal,NES)及亚细胞定位进行分析预测.采用PCR技术扩增GIMAP2基因片段,并插入至pQCXIP-mCherry-N1表达载体,用氨苄青霉素抗性筛选阳性克隆.测序正确的重组质粒pQCXIP-GIMAP2-mCherry经过提取,纯化步骤后,与逆转录病毒包装质粒VSVG,Gag/Pol在脂质体介导下共同转入HEK293FT细胞中进行病毒包装.转染48 h后收集病毒上清,直接感染人乳腺癌细胞系MDA-MB-436.使用免疫荧光染色方法检测内,外源性GIMAP2在MDA-MB-436胞内表达定位情况.使用绿色荧光化学染料分别标记稳定表达GIMAP2-mCherry融合蛋白的MDA-MB-436活细胞中的线粒体,内质网,脂滴,在超分辨率显微镜N-SIM下观察其与红色荧光的GIMAP2蛋白的定位情况.结果: 生物信息学分析数据显示,由337个氨基酸组成的GIMAP2蛋白在羧基端可能有2个跨膜螺旋结构,其中跨膜螺旋含预期氨基酸数为 40~41个,紧随跨膜螺旋结构之后的蛋白结构朝细胞质侧;羧基端第279~281位氨基酸有NES但无NLS;可能定位在内质网.测序结果表明,成功构建表达载体pQCXIP-GIMAP2-mCherry.荧光染色结果证实,GIMAP2-mCherry融合蛋白成功在MDA-MB-436细胞内表达,并与内源性GIMAP2定位一致,分布于内质网和脂滴.结论: 免疫相关GTP结合蛋白2定位于内质网和脂滴,可能与脂代谢相关.
中图分类号:
[1] | Reuber TL, Ausubel FM . Isolation of arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes[J]. Plant Cell, 1996,8(2):241-249. |
[2] | Poirier GM, Anderson G, Huvar A , et al. Immune-associated nucleotide-1 (IAN-1) is a thymic selection marker and defines a novel gene family conserved in plants[J]. J Immunol, 1999,163(9):4960-4969. |
[3] | Krucken J, Schroetel RM, Muller IU , et al. Comparative analysis of the human gimap gene cluster encoding a novel GTPase family[J]. Gene, 2004,341:291-304. |
[4] | Nitta T, Takahama Y . The lymphocyte guard-IANs: regulation of lymphocyte survival by IAN/GIMAP family proteins[J]. Trends Immunol, 2007,28(2):58-65. |
[5] | Barnes MJ, Aksoylar H, Krebs P , et al. Loss of T cell and B cell quiescence precedes the onset of microbial flora-dependent wasting disease and intestinal inflammation in Gimap5-deficient mice[J]. J Immunol, 2010,184(7):3743-3754. |
[6] | Saunders A, Webb LM, Janas ML , et al. Putative GTPase GIMAP1 is critical for the development of mature B and T lymphocytes[J]. Blood, 2010,115(16):3249-3257. |
[7] | Carter C, Dion C, Schnell S , et al. A natural hypomorphic variant of the apoptosis regulator Gimap4/IAN1[J]. J Immunol, 2007,179(3):1784-1795. |
[8] | Patterson AR, Bolcas P, Lampe K , et al. Loss of GTPase of immunity-associated protein 5 (Gimap5) promotes pathogenic CD4(+) T-cell development and allergic airway disease[J]. J Allergy Clin Immunol, 2019,143(1):245-257. |
[9] | la Cour T, Kiemer L, Molgaard A , et al. Analysis and prediction of leucine-rich nuclear export signals[J]. Protein Eng Des Sel, 2004,17(6):527-536. |
[10] | Kosugi S, Hasebe M, Tomita M , et al. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs[J]. Proc Natl Acad Sci USA, 2009,106(25):10171-10176. |
[11] | Shen HB, Chou KC . A top-down approach to enhance the power of predicting human protein subcellular localization: Hum-mPLoc 2.0[J]. Anal Biochem, 2009,394(2):269-274. |
[12] | Ciucci T, Bosselut R . Gimap and T cells: a matter of life or death[J]. Eur J Immunol, 2014,44(2):348-351. |
[13] | Lee YJ, Horie Y, Wallace GR , et al. Genome-wide association study identifies GIMAP as a novel susceptibility locus for Behcet's disease[J]. Ann Rheum Dis, 2013,72(9):1510-1516. |
[14] | Liau WS, Tan SH, Ngoc PCT , et al. Aberrant activation of the GIMAP enhancer by oncogenic transcription factors in T-cell acute lymphoblastic leukemia[J]. Leukemia, 2017,31(8):1798-1807. |
[15] | Heinonen MT, Laine AP, Soderhall C , et al. GIMAP GTPase family genes: potential modifiers in autoimmune diabetes, asthma, and allergy[J]. J Immunol, 2015,194(12):5885-5894. |
[16] | Schwefel D, Frohlich C, Eichhorst J , et al. Structural basis of oligomerization in septin-like GTPase of immunity-associated protein 2 (GIMAP2)[J]. Proc Natl Acad Sci USA, 2010,107(47):20299-202304. |
[17] | Schwefel D, Arasu BS, Marino SF , et al. Structural insights into the mechanism of GTPase activation in the GIMAP family[J]. Structure, 2013,21(4):550-559. |
[18] | Nakamura N, Banno Y, Tamiya-Koizumi K . Arf1-dependent PLD1 is localized to oleic acid-induced lipid droplets in NIH3T3 cells[J]. Biochem Biophys Res Commun, 2005,335(1):117-123. |
[19] | Zhang N, Yin P, Zhou L , et al. ARF1 activation dissociates ADRP from lipid droplets to promote HCV assembly[J]. Biochem Biophys Res Commun, 2016,475(1):31-36. |
[1] | 杨飞龙,洪锴,赵国江,刘承,宋一萌,马潞林. 基于长链非编码RNA的生物信息学分析构建膀胱癌预后模型并确定预后生物标志物[J]. 北京大学学报(医学版), 2019, 51(4): 615-622. |
[2] | 景霞, 张其鹏, 国强华, 卢铭, 朱晓华, 石磊, 芮伟, 尚彤. 网上免费医学生物学数据库指南的建立[J]. 北京大学学报(医学版), 2004, 36(3): 322-326. |
[3] | 马大龙. 计算机分析SARS病毒可能含有Caveolin结合区[J]. 北京大学学报(医学版), 2003, 35(z1): 139-139. |
[4] | 芮伟, 张其鹏, 石磊, 卢铭, 景霞, 国强华, 尚彤. SARS冠状病毒RNA聚合酶编码区分析[J]. 北京大学学报(医学版), 2003, 35(z1): 137-138. |
[5] | 芮伟, 张其鹏, 石磊, 卢铭, 景霞, 国强华, 尚彤. SARS冠状病毒可能编码蛋白质的三级结构预测[J]. 北京大学学报(医学版), 2003, 35(z1): 135-136. |
[6] | 张其鹏, 石磊, 芮伟, 卢铭, 国强华, 景霞, 尚彤. SARS冠状病毒全基因组突变初步分析[J]. 北京大学学报(医学版), 2003, 35(z1): 130-131. |
[7] | 张其鹏, 石磊, 芮伟, 卢铭, 国强华, 景霞, 尚彤. SARS冠状病毒基因组初步分析[J]. 北京大学学报(医学版), 2003, 35(z1): 128-129. |
[8] | 郑霙, 马大龙. 人程序化死亡分子5(PDCD5)核酸和蛋白质序列的数据发掘[J]. 北京大学学报(医学版), 2003, 35(4): 353-359. |
[9] | 张其鹏, 张丹, 刘贝, 朱晓华, 卢铭, 陈光慧, 尚彤, 汤建. 高血压相关基因和蛋白质数据库的初构[J]. 北京大学学报(医学版), 2002, 34(2): 178-183. |
[10] | 卢铭, 尚彤. 医学生物信息网的建立和发展[J]. 北京大学学报(医学版), 2001, 33(2): 189-191. |
|