北京大学学报(医学版) ›› 2020, Vol. 52 ›› Issue (2): 221-226. doi: 10.19723/j.issn.1671-167X.2020.02.005

• 论著 • 上一篇    下一篇

免疫相关GTP结合蛋白2的亚细胞定位分析

覃鸿泉1,2,郑幽2,王嫚娜2,张峥嵘2,牛祖彪2,马骊1,孙强2,黄红艳3,(),王小宁1,()   

  1. 1. 南方医科大学检验与生物技术学院分子免疫研究所,广州 510515
    2. 军事医学研究院生物工程研究所,北京 100071
    3. 首都医科大学附属北京世纪坛医院脑胶质瘤科,北京 100038
  • 收稿日期:2019-12-16 出版日期:2020-04-18 发布日期:2020-04-18
  • 通讯作者: 黄红艳,王小宁 E-mail:hhongy1999@126.com;xnwang88@163.com
  • 基金资助:
    国家自然科学基金(81872314);国家自然科学基金(31671432);国家重点研发计划(2016YFC1303303);国家重点研发计划(2018YFA0900804)

Subcellular localization of GTPase of immunity-associated protein 2

Hong-quan QIN1,2,You ZHENG2,Man-na WANG2,Zheng-rong ZHANG2,Zu-biao NIU2,Li MA1,Qiang SUN2,Hong-yan Huang3,(),Xiao-ning WANG1,()   

  1. 1. School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology,Southern Medical University, Guangzhou 510515, China
    2. Institute of Biotechnology, Academy of Military Medical Sciences, Beijing100071, China
    3. Department of Glioma, Beijing Shijitan Hospital, Capital Medical University, Beijing100038, China
  • Received:2019-12-16 Online:2020-04-18 Published:2020-04-18
  • Contact: Hong-yan Huang,Xiao-ning WANG E-mail:hhongy1999@126.com;xnwang88@163.com
  • Supported by:
    Supported by the National Natural Science Foundation of China(81872314);Supported by the National Natural Science Foundation of China(31671432);the National Key Research & Development Program of China(2016YFC1303303);the National Key Research & Development Program of China(2018YFA0900804)

RICH HTML

  

摘要:

目的 对免疫相关GTP结合蛋白2(GTPase of immunity-associated protein 2,GIMAP2)进行亚细胞定位分析,为深入研究GIMAP2蛋白的功能奠定基础.方法: 使用国家生物技术信息中心(National Center for Biotechnology Information,NCBI)数据库查询获取GIMAP2的蛋白序列,再利用生物信息学在线分析工具对GIMAP2蛋白的跨膜结构,核定位信号(nuclear localization signal,NLS),核输出信号(nuclear export signal,NES)及亚细胞定位进行分析预测.采用PCR技术扩增GIMAP2基因片段,并插入至pQCXIP-mCherry-N1表达载体,用氨苄青霉素抗性筛选阳性克隆.测序正确的重组质粒pQCXIP-GIMAP2-mCherry经过提取,纯化步骤后,与逆转录病毒包装质粒VSVG,Gag/Pol在脂质体介导下共同转入HEK293FT细胞中进行病毒包装.转染48 h后收集病毒上清,直接感染人乳腺癌细胞系MDA-MB-436.使用免疫荧光染色方法检测内,外源性GIMAP2在MDA-MB-436胞内表达定位情况.使用绿色荧光化学染料分别标记稳定表达GIMAP2-mCherry融合蛋白的MDA-MB-436活细胞中的线粒体,内质网,脂滴,在超分辨率显微镜N-SIM下观察其与红色荧光的GIMAP2蛋白的定位情况.结果: 生物信息学分析数据显示,由337个氨基酸组成的GIMAP2蛋白在羧基端可能有2个跨膜螺旋结构,其中跨膜螺旋含预期氨基酸数为 40~41个,紧随跨膜螺旋结构之后的蛋白结构朝细胞质侧;羧基端第279~281位氨基酸有NES但无NLS;可能定位在内质网.测序结果表明,成功构建表达载体pQCXIP-GIMAP2-mCherry.荧光染色结果证实,GIMAP2-mCherry融合蛋白成功在MDA-MB-436细胞内表达,并与内源性GIMAP2定位一致,分布于内质网和脂滴.结论: 免疫相关GTP结合蛋白2定位于内质网和脂滴,可能与脂代谢相关.

关键词: 免疫相关GTP结合蛋白2, 生物信息学, 亚细胞定位

Abstract:

Objective: To analyze the subcellular localization of GTPase of immunity-associated protein 2 (GIMAP2) for the further functional study.Methods: In the study,we first obtained the protein sequences of GTPase of immunity-associated protein 2 (GIMAP2) from National Center for Biotechnology Information (NCBI) database, and then performed a prediction analysis of its transmembrane structure, nuclear localization signal (NLS), nuclear export signal (NES) and subcellular localization through bioinformatics online tools. GIMAP2 gene amplified by PCR was inserted into the expression vector pQCXIP-mCherry-N1 and positive clones were selected by ampicillin resistance. After using methods to extract and purify, the sequenced recombinant plasmid pQCXIP-GIMAP2-mCherry, together with the retroviral packaging plasmids VSVG and Gag/pol, was transferred into HEK293FT cells by liposomes for virus packaging. The virus supernatant was collected 48 h after transfection and directly infected the human breast cancer cell line MDA-MB-436. Immunofluorescence staining was constructed to detect the localization of endogenous and exogenous GIMAP2 in MDA-MB-436 cells. Meanwhile, green fluorescent chemical dyes were used to label mitochondria, endoplasmic reticulum, and lipid droplets in living MDA-MB-436 cells stably expressing the GIMAP2-mCherry fusion protein. Images for the three dye-labeled organelles and GIMAP2-mCherry fusion protein were captured by super-resolution microscope N-SIM.Results: Bioinformatics analysis data showed that GIMAP2 protein composed of 337 amino acids might contain two transmembrane helix (TM) structures at the carboxyl terminus, of which TMs were estimated to contain 40-41 expected amino acids,followed by the residual protein structures toward the cytoplasmic side. NES was located at the 279-281 amino acids of the carboxyl terminus whereas NLS was not found. GIMAP2 might locate in the lumen of the endoplasmic reticulum. Sequencing results indicated that the expression vector pQCXIP-GIMAP2-mCherry was successfully constructed. Fluorescent staining confirmed that GIMAP2-mCherry fusion protein, co-localized well with endogenous GIMAP2, expressed successfully in the endoplasmic reticulum and on the surface of lipid droplets in MDA-MB-436 cells.Conclusion: GIMAP2 localizes in the endoplasmic reticulum and on the surface of LDs, suggesting potential involvement of GIMAP2 in lipid metabolism.

Key words: GTPase of immunity-associated protein 2, Bioinformatics, Subcellular localization

中图分类号: 

  • R392-33

图1

GIMAP2蛋白生物信息学分析"

图2

pQCXIP-GIMAP2-mCherry重组载体构建过程"

图3

内源性,外源性GIMAP2蛋白在MDA-MB-436细胞内共定位"

图4

GIMAP2-mCherry融合蛋白定位于细胞中内质网和脂滴"

[1] Reuber TL, Ausubel FM . Isolation of arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes[J]. Plant Cell, 1996,8(2):241-249.
[2] Poirier GM, Anderson G, Huvar A , et al. Immune-associated nucleotide-1 (IAN-1) is a thymic selection marker and defines a novel gene family conserved in plants[J]. J Immunol, 1999,163(9):4960-4969.
[3] Krucken J, Schroetel RM, Muller IU , et al. Comparative analysis of the human gimap gene cluster encoding a novel GTPase family[J]. Gene, 2004,341:291-304.
[4] Nitta T, Takahama Y . The lymphocyte guard-IANs: regulation of lymphocyte survival by IAN/GIMAP family proteins[J]. Trends Immunol, 2007,28(2):58-65.
[5] Barnes MJ, Aksoylar H, Krebs P , et al. Loss of T cell and B cell quiescence precedes the onset of microbial flora-dependent wasting disease and intestinal inflammation in Gimap5-deficient mice[J]. J Immunol, 2010,184(7):3743-3754.
[6] Saunders A, Webb LM, Janas ML , et al. Putative GTPase GIMAP1 is critical for the development of mature B and T lymphocytes[J]. Blood, 2010,115(16):3249-3257.
[7] Carter C, Dion C, Schnell S , et al. A natural hypomorphic variant of the apoptosis regulator Gimap4/IAN1[J]. J Immunol, 2007,179(3):1784-1795.
[8] Patterson AR, Bolcas P, Lampe K , et al. Loss of GTPase of immunity-associated protein 5 (Gimap5) promotes pathogenic CD4(+) T-cell development and allergic airway disease[J]. J Allergy Clin Immunol, 2019,143(1):245-257.
[9] la Cour T, Kiemer L, Molgaard A , et al. Analysis and prediction of leucine-rich nuclear export signals[J]. Protein Eng Des Sel, 2004,17(6):527-536.
[10] Kosugi S, Hasebe M, Tomita M , et al. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs[J]. Proc Natl Acad Sci USA, 2009,106(25):10171-10176.
[11] Shen HB, Chou KC . A top-down approach to enhance the power of predicting human protein subcellular localization: Hum-mPLoc 2.0[J]. Anal Biochem, 2009,394(2):269-274.
[12] Ciucci T, Bosselut R . Gimap and T cells: a matter of life or death[J]. Eur J Immunol, 2014,44(2):348-351.
[13] Lee YJ, Horie Y, Wallace GR , et al. Genome-wide association study identifies GIMAP as a novel susceptibility locus for Behcet's disease[J]. Ann Rheum Dis, 2013,72(9):1510-1516.
[14] Liau WS, Tan SH, Ngoc PCT , et al. Aberrant activation of the GIMAP enhancer by oncogenic transcription factors in T-cell acute lymphoblastic leukemia[J]. Leukemia, 2017,31(8):1798-1807.
[15] Heinonen MT, Laine AP, Soderhall C , et al. GIMAP GTPase family genes: potential modifiers in autoimmune diabetes, asthma, and allergy[J]. J Immunol, 2015,194(12):5885-5894.
[16] Schwefel D, Frohlich C, Eichhorst J , et al. Structural basis of oligomerization in septin-like GTPase of immunity-associated protein 2 (GIMAP2)[J]. Proc Natl Acad Sci USA, 2010,107(47):20299-202304.
[17] Schwefel D, Arasu BS, Marino SF , et al. Structural insights into the mechanism of GTPase activation in the GIMAP family[J]. Structure, 2013,21(4):550-559.
[18] Nakamura N, Banno Y, Tamiya-Koizumi K . Arf1-dependent PLD1 is localized to oleic acid-induced lipid droplets in NIH3T3 cells[J]. Biochem Biophys Res Commun, 2005,335(1):117-123.
[19] Zhang N, Yin P, Zhou L , et al. ARF1 activation dissociates ADRP from lipid droplets to promote HCV assembly[J]. Biochem Biophys Res Commun, 2016,475(1):31-36.
[1] 杨飞龙,洪锴,赵国江,刘承,宋一萌,马潞林. 基于长链非编码RNA的生物信息学分析构建膀胱癌预后模型并确定预后生物标志物[J]. 北京大学学报(医学版), 2019, 51(4): 615-622.
[2] 景霞, 张其鹏, 国强华, 卢铭, 朱晓华, 石磊, 芮伟, 尚彤. 网上免费医学生物学数据库指南的建立[J]. 北京大学学报(医学版), 2004, 36(3): 322-326.
[3] 马大龙. 计算机分析SARS病毒可能含有Caveolin结合区[J]. 北京大学学报(医学版), 2003, 35(z1): 139-139.
[4] 芮伟, 张其鹏, 石磊, 卢铭, 景霞, 国强华, 尚彤. SARS冠状病毒RNA聚合酶编码区分析[J]. 北京大学学报(医学版), 2003, 35(z1): 137-138.
[5] 芮伟, 张其鹏, 石磊, 卢铭, 景霞, 国强华, 尚彤. SARS冠状病毒可能编码蛋白质的三级结构预测[J]. 北京大学学报(医学版), 2003, 35(z1): 135-136.
[6] 张其鹏, 石磊, 芮伟, 卢铭, 国强华, 景霞, 尚彤. SARS冠状病毒全基因组突变初步分析[J]. 北京大学学报(医学版), 2003, 35(z1): 130-131.
[7] 张其鹏, 石磊, 芮伟, 卢铭, 国强华, 景霞, 尚彤. SARS冠状病毒基因组初步分析[J]. 北京大学学报(医学版), 2003, 35(z1): 128-129.
[8] 郑霙, 马大龙. 人程序化死亡分子5(PDCD5)核酸和蛋白质序列的数据发掘[J]. 北京大学学报(医学版), 2003, 35(4): 353-359.
[9] 张其鹏, 张丹, 刘贝, 朱晓华, 卢铭, 陈光慧, 尚彤, 汤建. 高血压相关基因和蛋白质数据库的初构[J]. 北京大学学报(医学版), 2002, 34(2): 178-183.
[10] 卢铭, 尚彤. 医学生物信息网的建立和发展[J]. 北京大学学报(医学版), 2001, 33(2): 189-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!