北京大学学报(医学版) ›› 2020, Vol. 52 ›› Issue (2): 227-233. doi: 10.19723/j.issn.1671-167X.2020.02.006

• 论著 • 上一篇    下一篇

棕榈酰化蛋白质组学分析揭示前列腺癌细胞中雄激素促进代谢相关蛋白棕榈酰化修饰

李文卿1,任思楣2,3,(),龙星博3,4,田雨青1   

  1. 1. 北京医院 国家老年医学中心 国家卫生健康委员会北京老年医学研究所 国家卫生健康委员会北京老年医学重点实验室 中国医学科学院老年医学研究院,北京 100730
    2. 北京医院 国家老年医学中心 国家卫生健康委员会临床检验中心 中国医学科学院老年医学研究院,北京 100730
    3. 中国医学科学院北京协和医学院研究生院,北京 100730
    4. 北京医院泌尿外科,北京 100730
  • 收稿日期:2019-12-10 出版日期:2020-04-18 发布日期:2020-04-18
  • 通讯作者: 任思楣 E-mail:rensimei4162@bjhmoh.cn
  • 基金资助:
    国家自然科学基金(81670161);北京医院博士启动基金(BJ2015-105)

Palmitoylome profiling indicates that androgens promote the palmitoylation of metabolism-related proteins in prostate cancer-derived LNCaP cells

Wen-qing LI1,Si-mei REN2,3,(),Xing-bo LONG3,4,Yu-qing TIAN1   

  1. 1. The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, China
    2. National Center for Clinical Laboratory, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, China
    3. Graduate School of Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
    4. Department of Urology, Beijing Hospital, Beijing 100730, China
  • Received:2019-12-10 Online:2020-04-18 Published:2020-04-18
  • Contact: Si-mei REN E-mail:rensimei4162@bjhmoh.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(81670161);Beijing Hospital Initial Foundation for Doctors(BJ2015-105)

RICH HTML

  

摘要:

目的 筛选棕榈酰化修饰水平受雄激素诱导的蛋白,探索前列腺癌去雄激素治疗外其他潜在的治疗靶点.方法: 以LNCaP细胞为研究对象,雄激素(Methyltrienolone,R1881,5 nmol/L)或DMSO(dimethyl sulfoxide)处理LNCaP细胞24 h,同时利用人工合成的炔基棕榈酸Alk-C16 (100 μmol/L)对细胞进行代谢标记,收集细胞,裂解,提取总蛋白,加入标记有叠氮化物的琼脂糖珠 (1 mmol/L), 室温反应1 h,利用叠氮化物与Alk-C16末端炔基发生点击化学反应形成的共价键将棕榈酰化修饰蛋白富集在琼脂糖珠上,进行蛋白质谱非标记定量分析(label-free quantitation, LFQ), 比较R1881处理和非处理细胞蛋白棕榈酰化修饰变化情况,筛选棕榈酰化修饰水平受雄激素诱导的蛋白.结果: 实验共鉴定出907个潜在的棕榈酰化修饰蛋白(mascot score> 2, P<0.05), 其中有430个蛋白LFQ值至少有2次不为0.在这430个蛋白中有92个蛋白R1881处理与非处理样品LFQ比值大于 1.5(P<0.05), 说明雄激素能够显著促进该蛋白棕榈酰化修饰.利用Cytoscape软件对92个蛋白进行功能富集分类,发现已知功能蛋白可分为代谢相关,蛋白折叠相关和翻译起始相关3类,其中,代谢相关蛋白包括脂代谢(6个),糖代谢(7个)和呼吸电子传递链(8个)3部分,另外还有少量氨基酸代谢(2个)和其他代谢相关蛋白(2个).参与呼吸电子传递链的细胞色素b-c1复合体亚基2 (cytochrome b-cl complex subunit2, UQCRC2) 雄激素R1881处理和未处理样品LFQ比值最高(>3,P<0.05),说明该蛋白棕榈酰化修饰受雄激素诱导最为明显.LFQ比值最高为UQCRC2,其次为脂代谢相关的长链特异性酰基辅酶A脱氢酶(very long-chain specific acyl-CoA dehydrogenase, ACADVL)和糖代谢相关的6-磷酸葡萄糖酸脱氢酶(6-phosphogluconate dehydrogenase, PGD), 但其LFQ比值均未超过3.结论: 代谢尤其是呼吸电子传递链相关蛋白的棕榈酰化调控机制的研究可能将为前列腺癌的诊疗和靶向药的研发提供新的指导思路.

关键词: 前列腺癌, 雄激素, 棕榈酰化, 代谢

Abstract:

Objective: To explore potential therapeutic targets other than androgen-deprivation treatment for prostate cancer by screening the proteins induced by androgen at palmitoylation modification level in LNCaP cells.Methods: The LNCaP cells were treated with androgen (Methyltrienolone, R1881, 5 nmol/L) or dimethyl sulfoxide (DMSO) for 24 h, and then labeled with alkynyl palmitic acid Alk-C16 (100 μmol/L). After that, the cells were collected, lysed, the total protein was extracted, agarose beads labeled with azide (1 mmol/L) were added, and the click-chemistry reaction was carried out at room temperature for 1 h. The covalent bond formed by click-chemistry reaction of azide and alkynyl group was used to enrich the palmitoylated proteins on agarose beads. Label-free quantitation (LFQ) was used to compare the protein palmitoylation level of R1881 treated and untreated cells to screen the proteins induced by androgen at palmitoylation modification level.Results: In this experiment, 907 potential palmitoylated proteins (mascot score>2, P<0.05) were identified, among which 430 proteins had LFQ values not zero at least twice. Among the 430 proteins, the palmitoylation levels of 92 candidates were increased by androgen treatment, and their LFQ values were significantly upregulated (>1.5-fold, P<0.05) in ≥2 samples of androgen-treated vs. untreated LNCaP cells. We also used the software of cytoscape to classify the 92 proteins, and found that the known functional proteins of them could be divided into three categories: metabolism related, protein folding related and translation initiation related. Among them, metabolism related proteins included lipid metabolism (6), glucose metabolism (7) and respiratory electron transport chain (8), and a small amount of amino acid metabolism (2) and other metabolism related proteins (2). Notably, the ratio of LFQ of cytochrome b-c1 complex subunit 2 (UQCRC2) was significantly (>3-fold, P<0.05) higher in androgen-treated cells compared with untreated cells, indicating that the palmitoylation level of UQCRC2 was enhanced by androgen most significantly than that of others. The second was long-chain acyl CoA dehydrogenase (ACADVL) related to lipid metabolism and glucose 6-phosphate dehydrogenase (PGD) related to glucose metabolism, but the LFQ ratio of them was less than 3-fold.Conclusion: The research on palmitoylation mechanism of metabolism, especially the proteins related to respiratory electron transport chain, will provide a new guidance for the diagnosis and treatment of prostate cancer and the development of targeted drugs.

Key words: Prostate cancer, Androgen, Palmitoylation, Metabolism

中图分类号: 

  • R737.25

图1

雄激素诱导的棕榈酰化修饰蛋白筛选"

图2

前列腺癌细胞中受雄激素诱导的棕榈酰化修饰蛋白功能网络图"

图3

在前列腺癌细胞中雄激素促进代谢相关蛋白的棕榈酰化修饰"

图4

前列腺癌细胞中雄激素促进UQCRC2棕榈酰化修饰水平"

[1] Bray F, Ferlay J, Soerjomataram I , et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68(6):394-424.
[2] Chen W, Zheng R, Zhang S , et al. Cancer incidence and mortality in China, 2013[J]. Cancer Lett, 2017,401:63-71.
[3] Watson PA, Arora VK, Sawyers CL . Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer[J]. Nat Rev Cancer, 2015,15(12):701-711.
[4] Wyatt AW, Gleave ME . Targeting the adaptive molecular landscape of castration-resistant prostate cancer[J]. EMBO Mol Med, 2015,7(7):878-894.
[5] Bishop JL, Davies A, Ketola K , et al. Regulation of tumor cell plasticity by the androgen receptor in prostate cancer[J]. Endocr Relat Cancer, 2015,22(3):R165-182.
[6] Quigley DA, Dang HX, Zhao SG , et al. Genomic hallmarks and structural variation in metastatic prostate cancer[J]. Cell, 2018,175(3):889.
[7] Viswanathan SR, Ha G, Hoff AM , et al. Structural alterations driving castration-resistant prostate cancer revealed by linked-read genome sequencing[J]. Cell, 2018,174(2):433-447.e419.
[8] Aicart-Ramos C, Valero RA, Rodriguez-Crespo I . Protein palmitoylation and subcellular trafficking[J]. Biochim Biophys Acta, 2011,1808(12):2981-2994.
[9] Charollais J , Van Der Goot FG. Palmitoylation of membrane proteins[J]. Mol Membr Biol, 2009,26(1):55-66.
[10] Ko PJ, Dixon SJ . Protein palmitoylation and cancer[J]. EMBO Rep, 2018,19(10):e46666.
[11] Thinon E, Hang HC . Chemical reporters for exploring protein acylation[J]. Biochem Soc Trans, 2015,43(2):253-261.
[12] Gottlieb CD, Linder ME . Structure and function of DHHC protein S-acyltransferases[J]. Biochem Soc Trans, 2017,45(4):923-928.
[13] Pepinsky RB, Zeng C, Wen D , et al. Identification of a palmitic acid-modified form of human sonic hedgehog[J]. J Biol Chem, 1998,273(22):14037-14045.
[14] Chen S, Zhu B, Yin C , et al. Palmitoylation-dependent activation of MC1R prevents melanomagenesis[J]. Nature, 2017,549(7672):399-403.
[15] Yao H, Lan J, Li C , et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours[J]. Nat Biomed Eng, 2019,3(4):306-317.
[16] Hannoush RN, Sun J . The chemical toolbox for monitoring protein fatty acylation and prenylation[J]. Nat Chem Biol, 2010,6(7):498-506.
[17] Hernandez JL, Davda D, Majmudar JD , et al. Correlated S-palmitoylation profiling of snail-induced epithelial to mesenchymal transition[J]. Mol Biosyst, 2016,12(6):1799-1808.
[18] Hannoush RN, Arenas-Ramirez N . Imaging the lipidome: omega-alkynyl fatty acids for detection and cellular visualization of lipid-modified proteins[J]. ACS Chem Biol, 2009,4(7):581-587.
[19] Liu NQ, Braakman RB, Stingl C , et al. Proteomics pipeline for biomarker discovery of laser capture microdissected breast cancer tissue[J]. J Mammary Gland Biol Neoplasia, 2012,17(2):155-164.
[20] Li W, Li W, Zou L , et al. Membrane targeting of inhibitory Smads through palmitoylation controls TGF-beta/BMP signaling[J]. Proc Natl Acad Sci USA, 2017,114(50):13206-13211.
[21] Liberti MV, Locasale JW . The Warburg effect: how does it benefit cancer cells[J]. Trends Biochem Sci, 2016,41(3):287.
[22] Li C, Zhang G, Zhao L , et al. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer[J]. World J Surg Oncol, 2016,14(1):15.
[23] Warburg O . On the origin of cancer cells[J]. Science, 1956,123(3191):309-314.
[24] Koppenol W, Bounds P . The Warburg effect and metabolic efficiency: recrunching the numbers[J]. Science, 2009,324:1029-1033.
[25] Shen LF, Chen YJ, Liu KM , et al. Role of S-palmitoylation by ZDHHC13 in mitochondrial function and metabolism in liver[J]. Sci Rep, 2017,7(1):2182.
[26] Crofts AR, Hong S, Wilson C , et al. The mechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc1 complex[J]. Biochim Biophys Acta, 2013,1827(11/12):1362-1377.
[27] 王福 . 基于细胞色素bc1复合物三维结构的新型Q0位点抑制剂的设计与合成[D]. 华中师范大学, 2012.
[1] 黄教悌,胡菁,韩博. 治疗相关神经内分泌前列腺癌机制研究与靶向治疗新进展[J]. 北京大学学报(医学版), 2024, 56(4): 557-561.
[2] 邢念增,王明帅,杨飞亚,尹路,韩苏军. 前列腺免活检创新理念的临床实践及其应用前景[J]. 北京大学学报(医学版), 2024, 56(4): 565-566.
[3] 颜野,李小龙,夏海缀,朱学华,张羽婷,张帆,刘可,刘承,马潞林. 前列腺癌根治术后远期膀胱过度活动症的危险因素[J]. 北京大学学报(医学版), 2024, 56(4): 589-593.
[4] 于书慧,韩佳凝,钟丽君,陈聪语,肖云翔,黄燕波,杨洋,车新艳. 术前盆底肌电生理参数对前列腺癌根治性切除术后早期尿失禁的预测价值[J]. 北京大学学报(医学版), 2024, 56(4): 594-599.
[5] 郑生旗,花天池,殷桂草,张伟,姚曳,李一帆. 甘油三酯葡萄糖指数与男性肾结石风险的关联[J]. 北京大学学报(医学版), 2024, 56(4): 610-616.
[6] 和静,房中则,杨颖,刘静,马文瑶,霍勇,高炜,武阳丰,谢高强. 血浆中脂质代谢分子与颈动脉粥样硬化斑块、传统心血管危险因素及膳食因素的关系[J]. 北京大学学报(医学版), 2024, 56(4): 722-728.
[7] 张祖洪,陈天娇,马军. 中小学生青春发动时相与心血管代谢危险因素的相关性[J]. 北京大学学报(医学版), 2024, 56(3): 418-423.
[8] 吴一凡,玉应香,谢岚,张志达,常翠青. 不同体重指数青年男性的静息能量消耗特点及预测方程评价[J]. 北京大学学报(医学版), 2024, 56(2): 247-252.
[9] 殳畅,韩烨,孙雨哲,杨再目,侯建霞. Ⅲ期牙周炎患者牙周基础治疗前后炎症性贫血相关指标的变化[J]. 北京大学学报(医学版), 2024, 56(1): 45-50.
[10] 崔孟杰,马奇,陈曼曼,马涛,王鑫鑫,刘婕妤,张奕,陈力,蒋家诺,袁雯,郭桐君,董彦会,马军,星一. 不同生长模式与7~17岁儿童青少年代谢综合征的关系[J]. 北京大学学报(医学版), 2023, 55(3): 415-420.
[11] 周桥. 肿瘤病理学研究的进展和展望[J]. 北京大学学报(医学版), 2023, 55(2): 201-209.
[12] 俞光岩,宿骞,张艳,吴立玲. 唾液腺疾病与全身系统性疾病的相关性[J]. 北京大学学报(医学版), 2023, 55(1): 1-7.
[13] 王雪萍,张于亚楠,卢天兰,卢喆,康哲维,孙瑶瑶,岳伟华. 首发精神分裂症肠道微生物多态性与临床症状及血清代谢组学的关联[J]. 北京大学学报(医学版), 2022, 54(5): 863-873.
[14] 左美妮,杜依青,于路平,戴翔,徐涛. 代谢综合征与肾透明细胞癌患者预后的相关性[J]. 北京大学学报(医学版), 2022, 54(4): 636-643.
[15] 刘圣杰,侯惠民,吕政通,丁鑫,王璐,张磊,刘明. 双极雄激素序贯免疫检查点抑制剂治疗转移性去势抵抗性前列腺癌4例[J]. 北京大学学报(医学版), 2022, 54(4): 766-769.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!