北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (4): 779-784. doi: 10.19723/j.issn.1671-167X.2022.04.033

• 综述 • 上一篇    

拉曼技术在泌尿系统肿瘤检测中的应用

郝哲1,岳蜀华*(),周利群*()   

  1. 1. 北京航空航天大学生物与医学工程学院,北京市生物医学工程高精尖创新中心,生物力学与力生物学教育部重点实验室,医用光子学研究所,北京 100083
    2. 北京大学第一医院泌尿外科,北京大学泌尿外科研究所,国家泌尿、男性生殖系肿瘤研究中心,泌尿生殖系疾病(男)分子诊治北京市重点实验室,北京 100034
  • 收稿日期:2022-04-06 出版日期:2022-08-18 发布日期:2022-08-11
  • 通讯作者: 岳蜀华,周利群 E-mail:yue_shuhua@buaa.edu.cn;zhoulqmail@sina.com
  • 基金资助:
    国家自然科学基金(62027824);首都卫生发展科研专项(2020-2Z-40713);首都卫生发展科研专项(2022-1-4072);首都临床诊疗技术特色研究及转化应用重点项目(Z211100002921070);北大百度基金(2020BD033)

Application of Raman-based technologies in the detection of urological tumors

Zhe HAO1,Shu-hua YUE*(),Li-qun ZHOU*()   

  1. 1. School of Biological and Medical Engineering, Beihang University, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Institute of Medical Photonics, Beijing 100083, China
    2. Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; National Urological Cancer Center; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
  • Received:2022-04-06 Online:2022-08-18 Published:2022-08-11
  • Contact: Shu-hua YUE,Li-qun ZHOU E-mail:yue_shuhua@buaa.edu.cn;zhoulqmail@sina.com
  • Supported by:
    National Natural Science Foundation of China(62027824);Capital Health Research and Development of Special(2020-2Z-40713);Capital Health Research and Development of Special(2022-1-4072);Clinical Features Research of Capital(Z211100002921070);Peking University Baidu Fund Grant(2020BD033)

关键词: 泌尿系肿瘤, 诊断, 光谱分析, 拉曼

Abstract:

Urinary system tumors affect a huge number of individuals, and are frequently recurrent and progressing following surgery, necessitating lifelong surveillance. As a result, early and precise diagnosis of urinary system cancers is important for prevention and therapy. Histopathology is now the golden stan-dard for the diagnosis, but it is invasive, time-consuming, and inconvenient for initial diagnosis and re-gular follow-up assessment. Endoscopy can directly witness the tumor's structure, but intrusive detection is likely to cause harm to the patient's organs, and it is apt to create other hazards in frequently examined patients. Imaging is a valuable non-invasive and quick assessment tool; however, it can be difficult to define the type of lesions and has limited sensitivity for early tumor detection. The conventional approaches for detecting tumors have their own set of limitations. Thus, detection methods that combine non-invasive detection, label-free detection, high sensitivity and high specificity are urgently needed to aid clinical diagnosis. Optical diagnostics and imaging are increasingly being employed in healthcare settings in a variety of sectors. Raman scattering can assess changes in molecular signatures in cancer cells or tissues based on the interaction with vibrational modes of common molecular bonds. Due to the advantages of label-free, strong chemical selectivity, and high sensitivity, Raman scattering, especially coherent Raman scattering microscopy imaging with high spatial resolution, has been widely used in biomedical research. And quantity studies have shown that it has a good application in the detection and diagnosis of bladder can-cer, renal clear cell carcinoma, prostate cancer, and other cancers. In this paper, several nonlinear imaging techniques based on Raman scattering technology are briefly described, including Raman spectroscopy, coherent anti-Stokes Raman scattering, stimulated Raman scattering, and surface-enhanced Raman spectroscopy. And we will discuss the application of these techniques for detecting urologic malignancy. Future research directions are predicted using the advantages and limitations of the aforesaid methodologies in the research. For clinical practice, Raman scattering technology is intended to enable more accurate, rapid, and non-invasive in early diagnosis, intraoperative margins, and pathological grading basis for clinical practice.

Key words: Urologic neoplasms, Diagnosis, Spectrum analysis, Raman

中图分类号: 

  • R737.1
1 Montironi R , Cheng L , Scarpelli M , et al. Pathology and genetics: Tumours of the urinary system and male genital system: Clinical implications of the 4th edition of the WHO classification and beyond[J]. Eur Urol, 2016, 70 (1): 120- 123.
doi: 10.1016/j.eururo.2016.03.011
2 Truong LD , Krishnan B , Shen SS . Intraoperative pathology consultation for kidney and urinary bladder specimens[J]. Arch Pathol Lab Med, 2005, 129 (12): 1585- 1601.
doi: 10.5858/2005-129-1585-IPCFKA
3 Babjuk M , Burger M , Capoun O , et al. European association of urology guidelines on non-muscle-invasive bladder cancer (Ta, T1, and carcinoma in situ)[J]. Eur Urol, 2022, 81 (1): 75- 94.
doi: 10.1016/j.eururo.2021.08.010
4 Haka AS , Shafer-Peltier KE , Fitzmaurice M , et al. Diagnosing breast cancer by using Raman spectroscopy[J]. Proc Natl Acad Sci USA, 2005, 102 (35): 12371- 12376.
doi: 10.1073/pnas.0501390102
5 Fan T , Sun G , Sun X , et al. Tumor energy metabolism and potential of 3-bromopyruvate as an inhibitor of aerobic glycolysis: Implications in tumor treatment[J]. Cancers (Basel), 2019, 11 (3): 317.
doi: 10.3390/cancers11030317
6 Hanahan D , Weinberg RA . Hallmarks of cancer: The next gene-ration[J]. Cell, 2011, 144 (5): 646- 674.
doi: 10.1016/j.cell.2011.02.013
7 He C , Wu X , Zhou J , et al. Raman optical identification of renal cell carcinoma via machine learning[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2021, 252, 119520.
doi: 10.1016/j.saa.2021.119520
8 Hubbard TJE , Shore A , Stone N . Raman spectroscopy for rapid intra-operative margin analysis of surgically excised tumour specimens[J]. Analyst, 2019, 144 (22): 6479- 6496.
doi: 10.1039/C9AN01163C
9 Yosef HK , Krauβ SD , Lechtonen T , et al. Noninvasive diagnosis of high-grade urothelial carcinoma in urine by Raman spectral imaging[J]. Anal Chem, 2017, 89 (12): 6893- 6899.
doi: 10.1021/acs.analchem.7b01403
10 Bensalah K , Fleureau J , Rolland D , et al. Raman spectroscopy: A novel experimental approach to evaluating renal tumours[J]. Eur Urol, 2010, 58 (4): 602- 608.
doi: 10.1016/j.eururo.2010.06.002
11 Shapiro A , Gofrit ON , Pizov G , et al. Raman molecular imaging: A novel spectroscopic technique for diagnosis of bladder cancer in urine specimens[J]. Eur Urol, 2011, 59 (1): 106- 112.
doi: 10.1016/j.eururo.2010.10.027
12 Cui S , Zhang S , Yue S . Raman spectroscopy and imaging for cancer diagnosis[J]. J Healthc Eng, 2018, 2018, 8619342.
13 Evans CL , Xie XS . Coherent anti-stokes Raman scattering microscopy: Chemical imaging for biology and medicine[J]. Annu Rev Anal Chem (Palo Alto Calif), 2008, 1, 883- 909.
doi: 10.1146/annurev.anchem.1.031207.112754
14 李润丰, 董大山, 施可彬. 光场调控在相干拉曼散射光谱与成像中的应用(特邀)[J]. 光子学报, 2022, 51 (1): 151- 162.
15 Pope I , Payne L , Zoriniants G , et al. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds[J]. Nat Nanotech-nol, 2014, 9 (11): 940- 946.
doi: 10.1038/nnano.2014.210
16 Freudiger CW , Min W , Saar BG , et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 2008, 322 (5909): 1857- 1861.
doi: 10.1126/science.1165758
17 Cheng JX , Xie XS . Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine[J]. Science, 2015, 350 (6264): aaa8870.
doi: 10.1126/science.aaa8870
18 Yue S , Li J , Lee SY , et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness[J]. Cell Metab, 2014, 19 (3): 393- 406.
doi: 10.1016/j.cmet.2014.01.019
19 Zhang L , Wu Y , Zheng B , et al. Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy[J]. Theranostics, 2019, 9 (9): 2541- 2554.
doi: 10.7150/thno.32655
20 Han XX , Rodriguez RS , Haynes CL , et al. Surface-enhanced Raman spectroscopy[J]. Nat Rev Methods Primers, 2022, (1): 87.
21 Pérez-Jiménez AI , Lyu D , Lu Z , et al. Surface-enhanced Raman spectroscopy: Benefits, trade-offs and future developments[J]. Chem Sci, 2020, 11 (18): 4563- 4577.
doi: 10.1039/D0SC00809E
22 Saginala K , Barsouk A , Aluru JS , et al. Epidemiology of bladder cancer[J]. Med Sci (Basel), 2020, 8 (1): 15.
23 Tatsugami K , Kuroiwa K , Kamoto T , et al. Evaluation of narrow-band imaging as a complementary method for the detection of bladder cancer[J]. J Endourol, 2010, 24 (11): 1807- 1811.
doi: 10.1089/end.2010.0055
24 Soubra A , Risk MC . Diagnostics techniques in nonmuscle invasive bladder cancer[J]. Indian J Urol, 2015, 31 (4): 283- 288.
doi: 10.4103/0970-1591.166449
25 Lee CS , Yoon CY , Witjes JA . The past, present and future of cystoscopy: The fusion of cystoscopy and novel imaging technology[J]. BJU Int, 2008, 102 (9 Pt B): 1228- 1233.
26 Yafi FA , Brimo F , Steinberg J , et al. Prospective analysis of sensitivity and specificity of urinary cytology and other urinary biomarkers for bladder cancer[J]. Urol Oncol, 2015, 33 (2): 66.
27 Chakraborty A , Dasari S , Long W , et al. Urine protein biomar-kers for the detection, surveillance, and treatment response prediction of bladder cancer[J]. Am J Cancer Res, 2019, 9 (6): 1104- 1117.
28 Chou R , Gore JL , Buckley D , et al. Urinary biomarkers for diagnosis of bladder cancer: A systematic review and meta-analysis[J]. Ann Intern Med, 2015, 163 (12): 922- 931.
doi: 10.7326/M15-0997
29 Wang Z , Que H , Suo C , et al. Evaluation of the NMP22 BladderChek test for detecting bladder cancer: A systematic review and meta-analysis[J]. Oncotarget, 2017, 8 (59): 100648- 100656.
doi: 10.18632/oncotarget.22065
30 He H , Han C , Hao L , et al. ImmunoCyt test compared to cytology in the diagnosis of bladder cancer: A meta-analysis[J]. Oncol Lett, 2016, 12 (1): 83- 88.
doi: 10.3892/ol.2016.4556
31 Stone N , Kendall C , Shepherd N , et al. Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers[J]. J Raman Spectrosc, 2002, 33 (7): 564- 573.
doi: 10.1002/jrs.882
32 Crow P , Uff J , Farmer JA , et al. The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro[J]. BJU Int, 2004, 93 (9): 1232- 1236.
doi: 10.1111/j.1464-410X.2004.04852.x
33 de Jong B , Bakker Schut T , Maquelin K , et al. Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy[J]. Anal Chem, 2006, 78 (22): 7761- 7769.
doi: 10.1021/ac061417b
34 Draga RO , Grimbergen MC , Vijverberg PL , et al. In vivo bladder cancer diagnosis by high-volume Raman spectroscopy[J]. Anal Chem, 2010, 82 (14): 5993- 5999.
doi: 10.1021/ac100448p
35 Zhang P , Zhang Y , Liu W , et al. A molecular beacon based surface-enhanced Raman scattering nanotag for noninvasive diagnosis of bladder cancer[J]. J Biomed Nanotechnol, 2019, 15 (7): 1589- 1597.
doi: 10.1166/jbn.2019.2780
36 Hu D , Xu X , Zhao Z , et al. Detecting urine metabolites of bladder cancer by surface-enhanced Raman spectroscopy[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2021, 247, 119108.
doi: 10.1016/j.saa.2020.119108
37 Ljungberg B, Albiges L, Abu-Ghanem Y, et al. European Asso-ciation of Urology guidelines on renal cell carcinoma: The 2022 Update[J/OL]. Eur Urol, 2022. doi: 10.1016/j.eururo.2022.03.006.
38 Volpe A , Kachura JR , Geddie WR , et al. Techniques, safety and accuracy of sampling of renal tumors by fine needle aspiration and core biopsy[J]. J Urol, 2007, 178 (2): 379- 386.
doi: 10.1016/j.juro.2007.03.131
39 Haifler M , Kutikov A . Update on renal mass biopsy[J]. Curr Urol Rep, 2017, 18 (4): 28.
doi: 10.1007/s11934-017-0674-y
40 Zhu D , Cao J , Zhi C , et al. Prognostic significance of the sub-classification of stage pT3a renal tumors by perinephric and sinus fat invasion[J]. Oncol Lett, 2020, 19 (3): 1721- 1726.
41 Wills H , Kast R , Stewart C , et al. Diagnosis of Wilms' tumor using near-infrared Raman spectroscopy[J]. J Pediatr Surg, 2009, 44 (6): 1152- 1158.
doi: 10.1016/j.jpedsurg.2009.02.041
42 Couapel JP , Senhadji L , Rioux-Leclercq N , et al. Optical spectroscopy techniques can accurately distinguish benign and malignant renal tumours[J]. BJU Int, 2013, 111 (6): 865- 871.
doi: 10.1111/j.1464-410X.2012.11369.x
43 Haifler M , Pence I , Sun Y , et al. Discrimination of malignant and normal kidney tissue with short wave infrared dispersive Raman spectroscopy[J]. J Biophotonics, 2018, 11 (6): e201700188.
doi: 10.1002/jbio.201700188
44 Mert S , Özbek E , Ötünçtemur A , et al. Kidney tumor staging using surface-enhanced Raman scattering[J]. J Biomed Opt, 2015, 20 (4): 047002.
doi: 10.1117/1.JBO.20.4.047002
45 Bjurlin MA , Wysock JS , Taneja SS . Optimization of prostate bio-psy: Review of technique and complications[J]. Urol Clin North Am, 2014, 41 (2): 299- 313.
doi: 10.1016/j.ucl.2014.01.011
46 Duffy MJ . Biomarkers for prostate cancer: prostate-specific antigen and beyond[J]. Clin Chem Lab Med, 2020, 58 (3): 326- 339.
doi: 10.1515/cclm-2019-0693
47 Crow P , Stone N , Kendall CA , et al. The use of Raman spectroscopy to identify and grade prostatic adenocarcinoma in vitro[J]. Br J Cancer, 2003, 89 (1): 106- 108.
doi: 10.1038/sj.bjc.6601059
48 Crow P , Barrass B , Kendall C , et al. The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines[J]. Br J Cancer, 2005, 92 (12): 2166- 2170.
doi: 10.1038/sj.bjc.6602638
49 Tollefson M , Magera J , Sebo T , et al. Raman spectral imaging of prostate cancer: Can Raman molecular imaging be used to augment standard histopathology?[J]. BJU Int, 2010, 106 (4): 484- 488.
doi: 10.1111/j.1464-410X.2010.09185.x
50 Li S , Zhang Y , Xu J , et al. Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine[J]. Applied Physics Letters, 2014, 105 (9): 091104.
doi: 10.1063/1.4892667
51 Chen N , Rong M , Shao X , et al. Surface-enhanced Raman spectroscopy of serum accurately detects prostate cancer in patients with prostate-specific antigen levels of 4-10 ng/mL[J]. Int J Nanomedicine, 2017, 12, 5399- 5407.
doi: 10.2147/IJN.S137756
52 Gao R , Lv Z , Mao Y , et al. SERS-based pump-free microfluidic chip for highly sensitive immunoassay of prostate-specific antigen biomarkers[J]. ACS Sens, 2019, 4 (4): 938- 943.
doi: 10.1021/acssensors.9b00039
53 Dong S , Wang Y , Liu Z , et al. Beehive-inspired macroporous SERS probe for cancer detection through capturing and analyzing exosomes in plasma[J]. ACS Appl Mater Interfaces, 2020, 12 (4): 5136- 5146.
doi: 10.1021/acsami.9b21333
54 Cui X , Liu T , Xu X , et al. Label-free detection of multiple genitourinary cancers from urine by surface-enhanced Raman spectroscopy[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2020, 240, 118543.
doi: 10.1016/j.saa.2020.118543
55 Del Mistro G , Cervo S , Mansutti E , et al. Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: A preliminary study[J]. Anal Bioanal Chem, 2015, 407 (12): 3271- 3275.
doi: 10.1007/s00216-015-8610-9
[1] 熊焰,李鑫,梁丽,李东,鄢丽敏,李雪迎,邸吉廷,李挺. 甲状腺粗针穿刺活检病理诊断的准确性评估[J]. 北京大学学报(医学版), 2023, 55(2): 234-242.
[2] 哈雪梅,姚永正,孙莉华,辛春杨,熊焰. 实性肺胎盘样变形1例及文献复习[J]. 北京大学学报(医学版), 2023, 55(2): 357-361.
[3] 宁博涵,张青霞,杨慧,董颖. 伴间质细胞增生、玻璃样变性及索状结构的子宫内膜样腺癌1例[J]. 北京大学学报(医学版), 2023, 55(2): 366-369.
[4] 陈适,刘田. 重视系统性血管炎的早期识别和个体化治疗[J]. 北京大学学报(医学版), 2022, 54(6): 1065-1067.
[5] 曹瑞洁,姚中强,焦朋清,崔立刚. 不同分类标准对中国大动脉炎的诊断效能比较[J]. 北京大学学报(医学版), 2022, 54(6): 1128-1133.
[6] 徐朝焰,林长艺,叶达梅,吴培埕,宋明辉,刘有添,邓琼,黄雪艳,范忠晓,游雪兰. 感染性关节炎诊断分析[J]. 北京大学学报(医学版), 2022, 54(6): 1234-1237.
[7] 张崔建,何志嵩,周利群. 上尿路尿路上皮癌的淋巴清扫[J]. 北京大学学报(医学版), 2022, 54(4): 592-594.
[8] 于博,赵扬玉,张喆,王永清. 妊娠合并感染性心内膜炎1例[J]. 北京大学学报(医学版), 2022, 54(3): 578-580.
[9] 孟广艳,张筠肖,张渝昕,刘燕鹰. IgG4相关性疾病中枢神经系统受累的临床特点分析[J]. 北京大学学报(医学版), 2021, 53(6): 1043-1048.
[10] 翟莉,邱楠,宋惠. 多中心网状组织细胞增生症1例[J]. 北京大学学报(医学版), 2021, 53(6): 1183-1187.
[11] 邱敏,费月阳,邓绍晖,刘承,卢剑,何为,陆敏,田晓军,张树栋,马潞林. 后肾腺瘤的诊治经验及文献回顾[J]. 北京大学学报(医学版), 2021, 53(2): 417-419.
[12] 孟圆,张丽琪,赵雅宁,柳登高,张祖燕,高岩. 67例上颌根尖周囊肿的三维影像特点分析[J]. 北京大学学报(医学版), 2021, 53(2): 396-401.
[13] 王昱,邓雪蓉,季兰岚,张晓慧,耿研,张卓莉. 超声检测痛风患者肌腱受累的危险因素和诊断价值[J]. 北京大学学报(医学版), 2021, 53(1): 143-149.
[14] 高璐,谷岩. 中国人群腭中缝形态特点分期与Demirjian牙龄的相关性[J]. 北京大学学报(医学版), 2021, 53(1): 133-138.
[15] 袁源,郎宁,袁慧书. CT能谱曲线在脊柱转移瘤和感染性病变中的鉴别诊断价值[J]. 北京大学学报(医学版), 2021, 53(1): 183-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王军, 肖水芳, 秦永, 王全桂, 陈丽. 以面神经麻痹为首诊表现的Wegener肉芽肿病一例[J]. 北京大学学报(医学版), 2007, 39(4): 434 -436 .
[2] 柳晓辉, 那加, 刘玲玲, 罗斌. 头颈部血管肉瘤3例[J]. 北京大学学报(医学版), 2001, 33(3): 288 -289 .
[3] 张震康. 口腔医学科学研究的重要进展和方向[J]. 北京大学学报(医学版), 2002, 34(2): 97 -98 .
[4] 梁成, 王兴, 伊彪, 李自力, 王晓霞. 骨性颞下颌关节强直伴小颌畸形及阻塞性睡眠呼吸暂停综合征的牵引成骨治疗[J]. 北京大学学报(医学版), 2002, 34(2): 112 -116 .
[5] 张勇, 栾庆先. 牙周维护治疗在保持牙周长期疗效中的作用[J]. 北京大学学报(医学版), 2011, 43(1): 29 -33 .
[6] 夏永华, 刘冬, 张彩凤, 付丹丹, 李敏, 李占国, 田中伟. NF-κB信号通路的阻断对皮肤鳞癌SCL-1细胞凋亡的影响[J]. 北京大学学报(医学版), 2011, 43(2): 179 -182 .
[7] 王学庆, 万有, 于英心, 韩济生. 关节炎大鼠背根神经节细胞的膜电生理学特征[J]. 北京大学学报(医学版), 2001, 33(1): 50 -53 .
[8] 唐志慧, 曾祥龙. 恒牙早期正常骨面型青少年上气道形态和舌骨位置的X线头影测量研究[J]. 北京大学学报(医学版), 2002, 34(2): 140 -143 .
[9] 关志忱, 魏本林, 孟作为. 远程无线排尿日记开发及20例年轻人客观排尿情况报告[J]. 北京大学学报(医学版), 2010, 42(4): 476 -479 .
[10] 张春丽, 王荣福, 李太华, 付占立. 新型有机锗倍半氧化物的抗肿瘤活性及其在荷瘤裸鼠的体内分布[J]. 北京大学学报(医学版), 2008, 40(2): 208 -210 .