北京大学学报(医学版) ›› 2024, Vol. 56 ›› Issue (5): 820-827. doi: 10.19723/j.issn.1671-167X.2024.05.011

• 论著 • 上一篇    下一篇

不同表观温度水平下大气细颗粒物暴露对人群非意外死亡的影响

王裕新1, 曹茹1, 黄婧1, Pitakchon Ponsawansong2, Benjawan Tawatsupa3, 潘小川1, Tippawan Prapamontol2, 李国星1,*()   

  1. 1. 北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191
    2. Environment and Health Research Unit, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
    3. Health Impact Assessment Division, Department of Health, Ministry of Public Health, Bangkok 11000, Thailand
  • 收稿日期:2021-05-18 出版日期:2024-10-18 发布日期:2024-10-16
  • 通讯作者: 李国星 E-mail:liguoxing@bjmu.edu.cn
  • 基金资助:
    中国国家自然科学基金国际(地区)合作与交流项目(41761144056);泰国自然科学基金和研究基金会国际合作与交流项目(RDG6030019)

Impact of fine particulate matter exposure on non-accidental mortality under different apparent temperature levels

Yuxin WANG1, Ru CAO1, Jing HUANG1, Ponsawansong Pitakchon2, Tawatsupa Benjawan3, Xiaochuan PAN1, Prapamontol Tippawan2, Guoxing LI1,*()   

  1. 1. Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing 100191, China
    2. Environment and Health Research Unit, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
    3. Health Impact Assessment Division, Department of Health, Ministry of Public Health, Bangkok 11000, Thailand
  • Received:2021-05-18 Online:2024-10-18 Published:2024-10-16
  • Contact: Guoxing LI E-mail:liguoxing@bjmu.edu.cn
  • Supported by:
    the International (Regional) Cooperation and Exchange Project of the National Natural Science Foundation of China(41761144056);the Major International Joint Research Project of National Research Council of Thailand/Thailand Research Fund(RDG6030019)

RICH HTML

  

摘要:

目的: 评估空气动力学直径≤2.5 μm的大气细颗粒物(particulate matter, PM2.5)暴露在不同表观温度水平下对人群非意外死亡的影响,进一步探究表观温度的效应修饰作用。方法: 采用时间序列研究,选取中国的天津和宁波两个城市、泰国的曼谷和清迈两个城市作为研究地点,以表观温度作为温度的暴露指标,通过对阈值温度的定量估计,根据阈值温度对应的污染物水平进行分层,采用广义泊松(Poisson)相加模型来评估不同温度水平下PM2.5暴露与人群非意外死亡之间的关联。结果: 天津、宁波、曼谷和清迈4个亚洲城市在研究期间PM2.5的平均浓度分别为(73.6±35.6)、(48.0±32.1)、(33.5±28.4)和(32.6±28.6) μg/m3,日均非意外死亡人数分别为148、57、28和8人。广义泊松相加模型分析显示,天津市滞后0 d的PM2.5浓度每升高10 μg/m3,非意外死亡人数增加0.43%(95%CI:0.33%~0.54%);宁波市滞后2 d的PM2.5每升高10 μg/m3,非意外死亡人数增加0.27%(95%CI:0.08%~0.46%)。天津市在高温水平下,空气污染的死亡影响更大,而宁波和曼谷在低温时PM2.5的死亡效应更明显。不同温度水平共污染物模型中,PM2.5的死亡效应相对稳健。结论: 大气细颗粒物暴露对人群非意外死亡有不利影响,应进一步注意控制空气污染,表观温度可能对PM2.5的死亡影响产生效应修饰作用,且在不同温度带的效应有所差异,应根据地区差异建立保护性政策,同时在探究空气污染和气候变化的相互影响方面应予更多关注。

关键词: PM2.5, 表观温度, 死亡率, 效应修饰

Abstract:

Objective: To assess the impact of exposure to particulate matter with aerodynamic diameter ≤2.5 μm (PM2.5) on non-accidental mortality under different apparent temperature levels and to further explore the modification effect of apparent temperature. Methods: This study used time-series design. Tianjin and Ningbo from China, Bangkok and Chiang Mai from Thailand were selected as the research sites, and the apparent temperature was applied as the exposure index. Through the quantitative estimation of the threshold temperature, the corresponding pollutant concentration was divided into high and low levels, and the generalized Poisson additive model was used to evaluate the association between PM2.5 exposure and non-accidental death of residents at different temperature levels. Results: The ave-rage concentrations of PM2.5 in Tianjin, Ningbo, Bangkok, and Chiang Mai during the study period were (73.6±35.6), (48.0±32.1), (33.5±28.4) and (32.6±28.6) μg/m3, respectively; the average daily non-accidental death counts were 148, 57, 28, and 8. The analysis of the generalized Poisson additive model showed that the daily non-accidental death counts increased by 0.43% (95%CI: 0.33%-0.54%) per 10 μg/m3 increase of PM2.5 in lag 0 day in Tianjin of China; 0.27% (95%CI: 0.08%-0.46%) per 10 μg/m3 increase of PM2.5 in lag 2 days in Ningbo of China. The effect was magnified in high temperature levels in Tianjin and in low temperatures in Ningbo and Bangkok. The mortality effect of PM2.5 in various temperature levels stayed still in co-pollutant regression models. Conclusion: Exposure to fine particulate matter had an adverse effect on non-accidental mortality, which reminded us to give further attention to the pollution control. The findings also indicated that apparent temperature might modify mortality effects of PM2.5 and the modification effect varied in different regions. Protective policies due to regional differences should be made and more scientific and social attention on mutual effect of air pollution and climate change needs to be appealed.

Key words: PM2.5, Apparent temperature, Mortality, Effect modification

中图分类号: 

  • R122.26

图1

四个城市的位置分布示意图"

表1

四个城市人群死亡、空气污染和气象资料的一般情况"

Variable Mean SD Minimum P 25 Median P 75 Maximum
Tianjin, China
  PM2.5/(μg/m3) 73.6 35.6 9.0 49.5 67.6 90.0 291.5
  NO2/(μg/m3) 43.2 16.2 12.8 32.0 40.0 51.2 142.4
  SO2/(μg/m3) 57.1 44.5 8.0 26.0 42.0 75.5 339.0
  AT/℃ 13.1 11.3 -14.1 2.1 14.4 23.8 32.1
  RH/% 58.1 18.3 15.0 44.0 60.0 72.0 97.0
  Mortality, n 148 43 13 122 152 176 340
Ningbo, China
  PM2.5/(μg/m3) 48.0 32.1 5.9 27.4 40.3 59.3 421.7
  NO2/(μg/m3) 42.5 18.4 7.6 29.2 39.7 53.8 121.8
  SO2/(μg/m3) 19.7 12.3 5.4 11.8 15.7 23.8 109.5
  AT/℃ 18.1 11.2 -3.3 7.7 18.7 27.6 38.5
  RH/% 74.2 12.3 28.0 66.0 75.0 84.0 97.0
  Mortality, n 93 18 52 80 90 104 166
Bangkok, Thailand
  PM2.5/(μg/m3) 33.5 28.4 5.1 15.6 23.4 41.7 266.2
  NO2/(μg/m3) 26.4 12.6 3.2 17.2 21.9 34.2 79.8
  SO2/(μg/m3) 3.2 1.8 0 2.1 2.7 3.6 14.9
  AT/℃ 29.1 1.8 18.4 28.1 29.3 30.3 33.4
  RH/% 65.6 9.0 37.3 60.3 66.1 71.4 94.9
  Mortality, n 28 5 7 24 28 33 46
Chiang Mai, Thailand
  PM2.5/(μg/m3) 32.6 28.6 4.8 14.9 22.6 41.5 266.2
  NO2/(μg/m3) 16.9 8.4 0 11.1 14.2 21.7 50.7
  SO2/(μg/m3) 1.4 0.9 0 1.0 1.1 1.6 8.4
  AT/℃ 27.1 3.0 11.5 25.5 27.4 28.9 35.1
  RH/% 69.4 11.2 39.8 61.9 70.9 77.6 93.6
  Mortality, n 8 2 0 6 8 10 20

表2

不同温度水平PM2.5每升高10 μg/m3对非意外死亡影响的超额危险度"

Items Threshold Excess risk (95%CI)/% P value of Q statistics
Tianjin, China
  Total 0.43 (0.33, 0.54) Reference
  Low 26.4 0.32 (0.22, 0.43) 0.47
  High 1.23 (1.01, 1.46) < ·0.001
Ningbo, China
  Total 0.27 (0.08, 0.46) Reference
  Low 26.5 0.28 (0.09, 0.47) 0.99
  High 0.18 (-0.40, 0.76) 0.75
Bangkok, Thailand
  Total 0.50 (-0.01, 1.02) Reference
  Low 26.6 2.70 (0.68, 4.77) 0.03
  High 0.49 (-0.03, 1.00) 1.00
Chiang Mai, Thailand
  Total 0.92 (-0.05, 1.91) Reference
  Low 29.1 0.89 (-0.10, 1.88) 1.00
  High 1.48 (-0.40, 3.40) 0.59
Overall
  Total 0.40 (0.20, 0.60) Reference
  Low 0.70 (-0.08, 1.50) 0.98
  High 0.70 (0.11, 1.30) 0.98

表3

共污染物模型中不同温度水平PM2.5每升高10 μg/m3对非意外死亡影响的超额危险度"

City, country Pollutant Temperature Excess risk/% (95%CI) P value of Q statistics
Tianjin, China PM2.5+NO2 Total 0.30 (0.10, 0.50) Reference
Low 0.24 (0.12, 0.36) 0.79
High 1.22 (-1.09, 3.58) 0.48
PM2.5+SO2 Total 0.30 (-0.38, 0.99) Reference
Low 0.26 (0.14, 0.38) 0.92
High 1.19 (-1.08, 3.51) 0.46
Ningbo, China PM2.5+NO2 Total 0.28 (0.09, 0.47) Reference
Low 0.29 (0.09, 0.48) 0.96
High 0.21 (-0.37, 0.79) 0.82
PM2.5+SO2 Total 0.29 (0.10, 0.48) Reference
Low 0.29 (0.10, 0.48) 0.97
High 0.24 (-0.33, 0.82) 0.88
Bangkok, Thailand PM2.5+NO2 Total 0.21 (-0.41, 0.82) Reference
Low 2.18 (0.26, 4.14) 0.05
High 0.17 (-0.44, 0.79) 0.94
PM2.5+SO2 Total 0.50 (-0.02, 1.03) Reference
Low 2.43 (0.38, 4.52) 0.07
High 0.18 (-0.43, 0.80) 0.43
Chiang Mai, Thailand PM2.5+NO2 Total 0.44 (-0.60, 1.50) Reference
Low 0.69 (-0.35, 1.75) 0.74
High 0.59 (-1.95, 3.20) 0.91
PM2.5+SO2 Total 0.55 (-0.45, 1.56) Reference
Low 0.86 (-0.13, 1.86) 0.66
High 1.45 (-0.44, 3.38) 0.41
1 WHO. Ten threats to global health in 2019 [EB/OL]. (2019-03-21) [2021-01-18]. www.who.int/vietnam/news/feature-stories/detail/ten-threats-to-global-health-in-2019.
2 李勇. 中国空气污染相关疾病负担的动态评估及其减排响应[D]. 兰州: 兰州大学, 2020.
3 Zeng Q , Ni Y , Jiang G , et al. The short term burden of ambient particulate matters on non-accidental mortality and years of life lost: A ten-year multi-district study in Tianjin, China[J]. Environ Pollut, 2017, 220 (Pt A): 713- 719.
4 Chen R , Yin P , Wang L , et al. Association between ambient temperature and mortality risk and burden: time series study in 272 main Chinese cities[J]. BMJ, 2018, 363, k4306.
5 Gasparrini A , Guo Y , Hashizume M , et al. Mortality risk attri-butable to high and low ambient temperature: A multicountry observational study[J]. Lancet, 2015, 386 (9991): 369- 375.
6 Burkart K , Canário P , Breitner S , et al. Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon[J]. Environ Pollut, 2013, 183, 54- 63.
7 Kioumourtzoglou MA , Schwartz J , James P , et al. PM2.5 and mortality in 207 US cities: Modification by temperature and city characteristics[J]. Epidemiology, 2016, 27 (2): 221- 227.
8 Meng X , Zhang Y , Zhao Z , et al. Temperature modifies the acute effect of particulate air pollution on mortality in eight Chinese cities[J]. Sci Total Environ, 2012, 435/436, 215- 221.
9 Li P , Xin J , Wang Y , et al. The acute effects of fine particles on respiratory mortality and morbidity in Beijing, 2004-2009[J]. Environ Sci Pollut Res Int, 2013, 20 (9): 6433- 6444.
10 Hsu WH , Hwang SA , Kinney PL , et al. Seasonal and temperature modifications of the association between fine particulate air pollution and cardiovascular hospitalization in New York state[J]. Sci Total Environ, 2017, 578, 626- 632.
11 Zhang J , Feng L , Hou C , et al. Interactive effect between tempe-rature and fine particulate matter on chronic disease hospital admissions in the urban area of Tianjin, China[J]. Int J Environ Health Res, 2021, 31 (1): 75- 84.
12 Sun S , Cao P , Chan KP , et al. Temperature as a modifier of the effects of fine particulate matter on acute mortality in Hong Kong[J]. Environ Pollut, 2015, 205, 357- 364.
13 Li Y , Ma Z , Zheng C , et al. Ambient temperature enhanced acute cardiovascular-respiratory mortality effects of PM2.5 in Beijing, China[J]. Int J Biometeorol, 2015, 59 (12): 1761- 1770.
14 Wang Y , Kloog I , Coull BA , et al. Estimating causal effects of long-term PM2.5 exposure on mortality in New Jersey[J]. Environ Health Perspect, 2016, 124 (8): 1182- 1188.
15 Vanos JK , Baldwin JW , Jay O , et al. Simplicity lacks robustness when projecting heat-health outcomes in a changing climate[J]. Nat Commun, 2020, 11 (1): 6079.
16 Puza B , Roberts S . A Bayesian approach to modeling the interaction between air pollution and temperature[J]. Ann Epidemiol, 2013, 23 (4): 198- 203.
17 Shaposhnikov D , Revich B , Bellander T , et al. Mortality related to air pollution with the Moscow heat wave and wildfire of 2010[J]. Epidemiology, 2014, 25 (3): 359- 364.
18 Ma Z , Hu X , Sayer AM , et al. Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004-2013[J]. Environ Health Perspect, 2016, 124 (2): 184- 192.
19 Kovats RS , Hajat S . Heat stress and public health: A critical review[J]. Annu Rev Public Health, 2008, 29, 41- 55.
20 Ho HC , Knudby A , Xu Y , et al. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area[J]. Sci Total Environ, 2016, 544, 929- 938.
21 Zeng Q , Li G , Zhao L , et al. Characteristics of the exposure-response relationship of particulate matter and mortality: A time series analysis of 7 cities in China[J]. J Occup Environ Med, 2015, 57 (10): e93- e100.
22 Macdonald RW , Harner T , Fyfe J . Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data[J]. Sci Total Environ, 2004, 342 (1/2/3): 5- 86.
23 Li G , Zhou M , Cai Y , et al. Does temperature enhance acute mortality effects of ambient particle pollution in Tianjin city, China[J]. Sci Total Environ, 2011, 409 (10): 1811- 1817.
24 Chung Y , Lim YH , Honda Y , et al. Mortality related to extreme temperature for 15 cities in Northeast Asia[J]. Epidemiology, 2015, 26 (2): 255- 262.
25 Gao J , Sun Y , Liu Q , et al. Impact of extreme high temperature on mortality and regional level definition of heat wave: A multi-city study in China[J]. Sci Total Environ, 2015, 505, 535- 544.
26 Chen K , Bi J , Chen J , et al. Influence of heat wave definitions to the added effect of heat waves on daily mortality in Nanjing, China[J]. Sci Total Environ, 2015, 506/507, 18- 25.
27 Williams R , Rankin N , Smith T , et al. Relationship between the humidity and temperature of inspired gas and the function of the airway mucosa[J]. Crit Care Med, 1996, 24 (11): 1920- 1929.
28 Krall JR , Anderson GB , Dominici F , et al. Short-term exposure to particulate matter constituents and mortality in a national study of U.S. urban communities[J]. Environ Health Perspect, 2013, 121 (10): 1148- 1153.
29 Chen C , Zhao B , Weschler CJ . Indoor exposure to "Outdoor PM10": Assessing its influence on the relationship between PM10 and short-term mortality in U.S. cities[J]. Epidemiology, 2012, 23 (6): 870- 878.
30 Keatinge WR , Coleshaw SR , Easton JC , et al. Increased platelet and red cell counts, blood viscosity, and plasma cholesterol levels during heat stress, and mortality from coronary and cerebral thrombosis[J]. Am J Med, 1986, 81 (5): 795- 800.
31 Gordon CJ , Leon LR . Thermal stress and the physiological response to environmental toxicants[J]. Rev Environ Health, 2005, 20 (4): 235- 263.
32 Leon LR . Thermoregulatory responses to environmental toxicants: The interaction of thermal stress and toxicant exposure[J]. Toxicol Appl Pharmacol, 2008, 233 (1): 146- 161.
33 Li J , Woodward A , Hou XY , et al. Modification of the effects of air pollutants on mortality by temperature: A systematic review and meta-analysis[J]. Sci Total Environ, 2017, 575, 1556- 1570.
34 Stafoggia M , Schwartz J , Forastiere F , et al. Does temperature modify the association between air pollution and mortality? A multicity case-crossover analysis in Italy[J]. Am J Epidemiol, 2008, 167 (12): 1476- 1485.
35 Qian Z , He Q , Lin HM , et al. High temperatures enhanced acute mortality effects of ambient particle pollution in the "oven" city of Wuhan, China[J]. Environ Health Perspect, 2008, 116 (9): 1172- 1178.
36 Li G , Jiang L , Zhang Y , et al. The impact of ambient particle pollution during extreme-temperature days in Guangzhou city, China[J]. Asia Pac J Public Health, 2014, 26 (6): 614- 621.
37 Li J , Wang Y , Yin P , et al. The burden of sulfur dioxide pollution on years of life lost from chronic obstructive pulmonary disease: A nationwide analysis in China[J]. Environ Res, 2021, 194, 110503.
[1] 赵亚楠,范慧芸,王翔宇,罗雅楠,张嵘,郑晓瑛. 孤独症患者过早死亡风险及死亡原因[J]. 北京大学学报(医学版), 2023, 55(2): 375-383.
[2] 刘云飞,党佳佳,钟盼亮,马宁,师嫡,宋逸. 1990—2019年中国5~24岁人群伤害死亡率分析[J]. 北京大学学报(医学版), 2022, 54(3): 498-504.
[3] 骆大胜, 陈荔丽, 韦萍, 江震, 郭岩. 运用生命挽救工具预测降低广西农村孕产妇死亡率的干预措施健康效果的适用性[J]. 北京大学学报(医学版), 2013, 45(03): 427-431.
[4] 冯星淋, 杨青, 徐玲, 王燕, 郭岩 . 中国实现联合国千年发展目标5的进程和挑战(英文稿)[J]. 北京大学学报(医学版), 2011, 43(3): 391-396.
[5] 杨祖耀, 詹思延, 王波, 吕晓珍, 舒正, 何英剑, 邱宁, 杨慧英. 中国血流感染住院病死率的系统评价和meta分析[J]. 北京大学学报(医学版), 2010, 42(3): 304-307.
[6] 任正洪, 安琳, 张伶俐. 应用残差自回归模型预测2020年我国妇幼卫生健康指标[J]. 北京大学学报(医学版), 2010, 42(2): 221-224.
[7] 张燕萍, 张志琴, 刘旭辉, 张晓萍, 封宝琴, 李海平. 太原市颗粒物空气污染与人群每日死亡率的关系[J]. 北京大学学报(医学版), 2007, 39(2): 153-157.
[8] 简伟研, 崔涛, 王洪源, 胡牧, 黄因敏, 张修梅, 郭岩. 诊断相关组死亡风险分级在医疗质量评估中的应用[J]. 北京大学学报(医学版), 2007, 39(2): 145-148.
[9] 谢京诚, 单宏宽, 宋明, 马长城. 颅脑损伤56例死亡原因探讨[J]. 北京大学学报(医学版), 2001, 33(6): 584-585.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!