北京大学学报(医学版) ›› 2025, Vol. 57 ›› Issue (1): 178-184. doi: 10.19723/j.issn.1671-167X.2025.01.027

• 论著 • 上一篇    下一篇

体重校正腰围指数与疼痛的相关性:一项横断面研究

刘慧丽1, 闻蓓2, 白雪3, 陈明安3, 李民1,*()   

  1. 1. 北京大学第三医院麻醉科,北京 100191
    2. 中国医学科学院北京协和医院麻醉科,北京 100730
    3. 延安市中医医院(北京大学第三医院延安分院)麻醉科,延安 716000
  • 收稿日期:2024-07-25 出版日期:2025-02-18 发布日期:2025-01-25
  • 通讯作者: 李民 E-mail:liminanesth@bjmu.edu.cn

Association between weight-adjusted waist index and pain: A cross-sectional study

Huili LIU1, Bei WEN2, Xue BAI3, Ming'an CHEN3, Min LI1,*()   

  1. 1. Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
    2. Department of Anesthe-siology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
    3. Department of Anesthesiology, Yan'an Hospital of Traditional Chinese Medicine, Yan'an 716000, China
  • Received:2024-07-25 Online:2025-02-18 Published:2025-01-25
  • Contact: Min LI E-mail:liminanesth@bjmu.edu.cn

RICH HTML

  

摘要:

目的: 探讨体重校正腰围指数(weight-adjusted waist index,WWI)与美国成人急性、亚急性、慢性疼痛之间的相关性。方法: 采用横断面研究,提取1999—2004年美国国家卫生和营养检查调查(National Health and Nutrition Examination Survey,NHANES)数据库中关于成人腰围、体质量和疼痛等变量,及性别、年龄、种族、婚姻状况、教育水平、家庭收入、体力活动情况、饮酒、吸烟和糖尿病患病状况等协变量数据。采用多分类Logistic回归分析构建3种模型,评估WWI与急性、亚急性和慢性疼痛之间的相关性。模型1未对协变量进行校正,模型2对年龄、性别、种族、婚姻状况、教育水平和家庭收入情况进行校正,模型3进一步校正了体力活动、饮酒、吸烟和糖尿病患病情况等所有协变量。结果: 共纳入12 694例参与者,平均年龄为(50.8±18.7)岁, 其中9 614例(75.74%)未出现超过24 h的疼痛,870例(6.85%)出现急性疼痛,354例(2.79%)出现亚急性疼痛,1 856例(14.62%)出现慢性疼痛。所有参与者的WWI为(10.95±0.85) cm/$\sqrt{\mathrm{kg}}$,根据WWI的四分位数分为4组:Q1组为(7.90~10.36) cm/$\sqrt{\mathrm{kg}}$,Q2组为(10.37~10.94) cm/$\sqrt{\mathrm{kg}}$,Q3组为(10.95~11.53) cm/$\sqrt{\mathrm{kg}}$,Q4组为(11.54~15.20) cm/$\sqrt{\mathrm{kg}}$。随着WWI的增加,参与者的急性、慢性疼痛状态的差异有统计学意义(P < 0.001)。模型1中,与Q1组相比,Q2组和Q4组的急性疼痛风险降低(Q2组:OR=0.765,95%CI:0.615~0.953,P=0.017;Q4组:OR=0.648,95%CI:0.503~0.835,P < 0.001);与Q1组相比,Q2组、Q3组和Q4组的慢性疼痛风险均增加(Q2组:OR=1.365,95%CI:1.149~1.622,P < 0.001;Q3组:OR=1.291,95%CI:1.082~1.541,P=0.005;Q4组:OR=1.874,95%CI:1.579~ 2.224,P < 0.001)。模型2中,与Q1组相比,其他3组慢性疼痛风险增加(Q2组:OR=1.359,95%CI:1.137~1.624,P=0.001Q3组:OR=1.260,95%CI:1.039~1.528,P=0.019;Q4组:OR=1.735,95%CI:1.413~2.132,P < 0.001)。模型3中与Q1组相比,Q4组的慢性疼痛风险增加49.2%(OR=1.492,95%CI:1.208~1.842,P < 0.001)。在模型2和模型3中,急性疼痛与WWI未见相关性(均P>0.05);3个模型均未发现亚急性疼痛与WWI存在相关性(均P>0.05)。结论: WWI与美国成人急性疼痛、亚急性疼痛之间未见明显相关性,但随着WWI的增加,慢性疼痛风险增加, 所以有必要通过大规模前瞻性研究进一步验证这一结论。

关键词: 疼痛, 体重校正腰围指数, 肥胖, 横断面研究

Abstract:

Objective: To investigate the relationship between the weight-adjusted waist index (WWI) and acute, subacute pain or chronic pain among American adults. Methods: There was a cross-sectional study. Data from the 1999-2004 National Health and Nutrition Examination Survey (NHANES) concerning waist circumference, weight, pain status and covariates (age, gender, race, marital status, education level and income, physical activity, alcohol consumption, smoking status, and diabetes) were extracted for analysis. Multinomial Logistic regression was conducted across the three models to investigate the associations between WWI and acute, subacute and chronic pain. Model 1 did not involve any adjustments. Model 2 involved adjustments for age, gender, race, marital status, education level, and income. Model 3 was further adjusted for physical activity, alcohol consumption, smoking, and diabetes status. Results: This study involved 12 694 participants with an average age of (50.6±18.7) years. Among all the participants, 9 614 people (75.74%) had no pain, 870 people (6.85%) experienced acute pain, 354 people (2.79%) suffered from subacute pain, and 1 856 people (14.62%) experienced chronic pain. The WWI of all the participants was (10.95±0.85) cm/$\sqrt{\mathrm{kg}}$, divided into four groups based on quartiles: Group Q1 (7.90-10.36) cm/$\sqrt{\mathrm{kg}}$, group Q2 (10.37-10.94) cm/$\sqrt{\mathrm{kg}}$, group Q3 (10.95-11.53) cm/$\sqrt{\mathrm{kg}}$ and group Q4 (11.54-15.20) cm/$\sqrt{\mathrm{kg}}$. With the increase of WWI, the analysis revealed a significant statistical difference in the participants' acute and chronic pain status (all P < 0.001). In Model 1, the prevalence of acute pain was lower in group Q2 and group Q4 compared with group Q1 (group Q2: OR=0.765, 95%CI: 0.615-0.953, P=0.017; group Q4: OR= 0.648, 95%CI: 0.503-0.835, P < 0.001). Compared with group Q1, the prevalence of chronic pain increased in group Q2, group Q3, and group Q4 (group Q2: OR =1.365, 95%CI: 1.149-1.622, P < 0.001; group Q3: OR=1.291, 95%CI: 1.082-1.541, P=0.005; group Q4: OR=1.874, 95%CI: 1.579-2.224, P < 0.001). In Model 2, compared with group Q1, an increase in chronic pain prevalence was still associated with an increase in WWI in other three groups (group Q2: OR=1.359, 95%CI: 1.137-1.624, P=0.001; group Q3: OR=1.260, 95%CI: 1.039-1.528, P=0.019; group Q4: OR=1.735, 95%CI: 1.413-2.132, P < 0.001). In Model 3, group Q4 had a 49.2% increased prevalence of chronic pain compared to group Q1 (OR = 1.492, 95%CI: 1.208-1.842, P < 0.001). However, in Models 2 and 3, no significant relationship was observed between acute pain and WWI (all P>0.05). And none of the three models identified a significant association between subacute pain and WWI (all P>0.05). Conclusion: For American adults, there was no significant correlation between WWI and acute pain or subacute pain. However, as WWI increases, so does the prevalence of chronic pain. Further validation of this conclusion through large-scale prospective studies is warranted.

Key words: Pain, Weight-adjusted waist index, Obesity, Cross-sectional study

中图分类号: 

  • R441.1

表1

4组疼痛状态参与者的比较"

Items No pain
(n=9 614)
Acute pain
(n=870)
Subacute pain
(n=354)
Chronic pain
(n=1 856)
F/χ2 P
WWI/(cm/kg), ${\bar x}$±s 10.76±0.81 10.67±0.78 10.76±0.80 10.94±0.82 23.593 < 0.001
Age/years, n (%)         218.748 < 0.001
     < 40 3 206 (33.3) 369 (42.4) 110 (31.1) 437 (23.5)    
    40-59 2 791 (29.0) 320 (36.8) 148 (41.8) 727 (39.2)    
    ≥60 3 617 (37.7) 181 (20.8) 96 (27.1) 692 (37.3)    
Gender, n (%)         53.730 < 0.001
    Male 4 990 (51.9) 435 (50) 141 (39.8) 819 (44.1)    
    Female 4 624 (48.1) 435 (50) 213 (60.2) 1 037 (55.9)    
Race, n (%)         129.162 < 0.001
    Non-hispanic whites 4 619 (48.0) 498 (57.2) 195 (55.1) 1 110 (59.8)    
    Non-hispanic blacks 1 917 (19.9) 158 (18.2) 67 (18.9) 348 (18.8)    
    Mexican Americans 2 351 (24.5) 151 (17.4) 69 (19.5) 287 (15.4)    
    Other racial backgrounds 727 (7.6) 63 (7.2) 23 (6.5) 111 (6.0)    
Education level, n (%)         32.430 < 0.001
    Less than high school 1 917 (19.9) 163 (18.7) 67 (19.0) 427 (23.0)    
    High school 2 482 (25.9) 212 (24.4) 92 (25.9) 533 (28.7)    
    Above high school 5 195 (54.0) 495 (56.9) 195 (55.1) 895 (48.2)    
    Missing 20 (0.2) 0 (0.0) 0 (0.0) 1 (0.1)    
Marital status, n (%)         62.155 < 0.001
    Married or living with a partner 6 088 (63.3) 558 (64.1) 211 (59.6) 1 255 (67.6)    
    Widowed or divorced or separated 1 679 (17.5) 147 (16.9) 78 (22.1) 396 (21.3)    
    Never married 1 842 (19.2) 165 (19.0) 65 (18.3) 204 (11.0)    
    Missing 5 (0.0) 0 (0.0) 0 (0.0) 1 (0.1)    
PIR, n (%)         48.824 < 0.001
    <1.0 1 251 (13.0) 108 (12.4) 59 (16.7) 312 (16.8)    
    1.0-2.9 3 500 (36.4) 298 (34.2) 126 (35.6) 721 (38.8)    
    ≥ 3.0 4 863 (50.6) 464 (53.4) 169 (47.7) 823 (44.4)    
Daily physical activity, n (%)         80.103 < 0.001
    Sedentary 2 260 (23.5) 199 (22.9) 96 (27.1) 575 (31.0)    
    Mild physical activity 5 236 (54.5) 426 (49.0) 169 (47.7) 910 (49.0)    
    Moderate physical activity 1 454 (15.1) 167 (19.2) 54 (15.3) 257 (13.8)    
    Severe physical activity 655 (6.8) 77 (8.8) 35 (9.9) 109 (5.9)    
    Missing 9 (0.1) 1 (0.1) 0 (0.0) 5 (0.3)    
Smoking, n (%)         112.445 < 0.001
    Never smokers 5 052 (52.6) 419 (48.2) 173 (48.8) 753 (40.5)    
    Former smokers 2 009 (20.9) 217 (24.9) 93 (26.3) 557 (30.0)    
    Current smokers 2 539 (26.4) 234 (26.9) 88 (24.9) 545 (29.4)    
    Missing 14 (0.1) 0 (0.0) 0 (0.0) 1 (0.1)    
Alcoholic drinks per day, n (%)         28.080 < 0.001
    No 1 710 (17.8) 148 (17.0) 67 (18.9) 489 (26.4)    
    1-2 glasses 2 685 (27.9) 224 (25.7) 85 (24.1) 488 (26.3)    
    > 2 glasses 5 219 (54.3) 498 (57.3) 202 (57.0) 879 (47.3)    
Diabetes, n (%)         65.809 < 0.001
    No 8 580 (89.2) 794 (91.2) 296 (83.6) 1 561 (84.1)    
    Yes 901 (9.4) 71 (8.2) 48 (13.6) 261 (14.1)    
    Borderline 130 (1.4) 5 (0.6) 9 (2.5) 34 (1.8)    
    Missing 3 (0.0) 0 (0.0) 1 (0.3) 0 (0.0)    

表2

体重校正腰围指数与疼痛关系的无序多分类Logistic回归分析"

Type of pain Model Weight-adjusted waist index/(cm/$\sqrt{\mathrm{kg}}$)(Q1 group as reference)
Q2   Q3   Q4
OR(95%CI) P OR(95%CI) P OR(95%CI) P
Acute painModel 1 0.765 (0.615-0.953) 0.017   0.880 (0.708-1.093) 0.248   0.648 (0.503-0.835) 0.001
Model 2 0.873 (0.696-1.097) 0.244 1.153 (0.910-1.460) 0.239 0.974 (0.722-1.314) 0.864
Model 3 0.875 (0.697-1.099) 0.250 1.150 (0.906-1.459) 0.250 0.949 (0.705-1.277) 0.729
Subacute painModel 1 1.098 (0.775-1.557) 0.598 1.009 (0.710-1.433) 0.961 1.006 (0.679-1.491) 0.975
Model 2 1.184 (0.824-1.702) 0.361 1.121 (0.763-1.645) 0.561 1.072 (0.664-1.730) 0.776
Model 3 1.177 (0.818-1.692) 0.380 1.062 (0.722-1.562) 0.760 0.936 (0.567-1.544) 0.795
Chronic painModel 1 1.365 (1.149-1.622) < 0.001 1.291 (1.082-1.541) 0.005 1.874 (1.579-2.224) < 0.001
Model 2 1.359 (1.137-1.624) 0.001 1.260 (1.039-1.528) 0.019 1.735 (1.413-2.132) < 0.001
Model 3 1.324 (1.106-1.585) 0.002 1.186 (0.977-1.439) 0.085 1.492 (1.208-1.842) < 0.001

表3

体重校正腰围指数与慢性疼痛的无序多分类Logistic回归分析"

Variable Weight-adjusted waist index as the main variable
OR(95%CI ) P
Gender/(male as reference)
    Female 1.430 (1.251-1.636) < 0.001
Age/(< 40 years as reference)
    40-59 1.468 (1.238-1.742) < 0.001
    ≥60 0.920 (0.750-1.128) 0.421
Race/(non-hispanic whites as reference)
    Non-hispanic blacks 0.768 (0.658-0.897) 0.001
    Mexican Americans 0.412 (0.337-0.503) < 0.001
    Other racial backgrounds 0.709 (0.553-0.908) 0.007
Education level/(less than high school as reference)
    High school 0.916 (0.766-1.095) 0.335
    Above high school 0.858 (0.720-1.022) 0.088
Marital status/(married or living with a partner as reference)
    Widowed or divorced or separated 0.960 (0.818-1.126) 0.616
    Never married 0.583 (0.473-0.718) < 0.001
PIR/(< 1.0 as reference)
    1.0-2.9 0.774 (0.645-0.929) 0.006
    ≥ 3.0 0.607 (0.496-0.744) < 0.001
Daily physical activity/(sedentary as reference)
    Mild physical activity 0.805 (0.695 -.932) 0.004
    Moderate physical activity 0.833 (0.683-1.015) 0.069
    Severe physical activity 0.954 (0.723-1.258) 0.738
Smoking/(never smokers as reference)
    Former smokers 1.887 (1.602-2.222) < 0.001
    Current smokers 1.364 (1.158-1.607) < 0.001
Alcoholic drinks per day/(no drinking as reference)
    1-2 glasses 0.744 (0.628-0.881) 0.001
    > 2 glasses 0.708 (0.577-0.870) 0.001
Diabetes/(no diabetes as reference)
    Yes 1.591 (1.299-1.948) < 0.001
    Borderline 1.056 (0.647-1.724) 0.827
WWI/(Q1 group as reference)
    Q2 1.324 (1.106-1.585) 0.002
    Q3 1.186 (0.977-1.439) 0.085
    Q4 1.492 (1.208-1.842) < 0.001
1 Flor H , Noguchi K , Treede RD , et al. The role of evolving concepts and new technologies and approaches in advancing pain research, management, and education since the establishment of the International Association for the Study of Pain[J]. Pain, 2023, 164 (S11): S16- S21.
2 Nahin RL . Estimates of pain prevalence and severity in adults: United States, 2012[J]. J Pain, 2015, 16 (8): 769- 780.
doi: 10.1016/j.jpain.2015.05.002
3 闻蓓, 朱贺, 许力, 等. 日常咖啡摄入与疼痛的关系: 基于NHANES数据库的大样本横断面研究[J]. 协和医学杂志, 2024, 15 (2): 351- 358.
4 McVinnie DS . Obesity and pain[J]. Br J Pain, 2013, 7 (4): 163- 170.
doi: 10.1177/2049463713484296
5 Kivimäki M , Strandberg T , Pentti J , et al. Body-mass index and risk of obesity-related complex multimorbidity: An observational multicohort study[J]. Lancet Diabetes Endocrinol, 2022, 10 (4): 253- 263.
doi: 10.1016/S2213-8587(22)00033-X
6 Walsh TP , Arnold JB , Evans AM , et al. The association between body fat and musculoskeletal pain: A systematic review and meta-analysis[J]. BMC Musculoskelet Disord, 2018, 19 (1): 233.
doi: 10.1186/s12891-018-2137-0
7 Park Y , Kim NH , Kwon TY , et al. A novel adiposity index as an integrated predictor of cardiometabolic disease morbidity and mortality[J]. Sci Rep, 2018, 8 (1): 16753.
doi: 10.1038/s41598-018-35073-4
8 Ray L , Lipton RB , Zimmerman ME , et al. Mechanisms of association between obesity and chronic pain in the elderly[J]. Pain, 2011, 152 (1): 53- 59.
doi: 10.1016/j.pain.2010.08.043
9 Kim JY , Choi J , Vella CA , et al. Associations between weight-adjusted waist index and abdominal fat and muscle mass: Multi-ethnic study of atherosclerosis[J]. Diabetes Metab J, 2022, 46 (5): 747- 755.
doi: 10.4093/dmj.2021.0294
10 Shen Y , Wu Y , Luo P , et al. Association between weight-adjusted-waist index and depression in US adults: A cross-sectional study[J]. J Affect Disord, 2024, 355 (15): 299- 307.
11 Huang XT , Lv X , Jiang H . The weight-adjusted-waist index and cognitive impairment among U.S. older adults: A population-based study[J]. Front Endocrinol (Lausanne), 2023, 14 (8): 1276212.
12 Liu Y , Liu X , Zhang S , et al. Association of anthropometric indices with the development of diabetes among hypertensive patients in China: A cohort study[J]. Front Endocrinol (Lausanne), 2021, 12 (5): 736077.
13 Wang W , Lu X , Li Q , et al. The relationship between blood lead level and chronic pain in us adults: A nationwide cross-sectional study[J]. Pain Ther, 2023, 12 (5): 1195- 1208.
doi: 10.1007/s40122-023-00535-9
14 Garcia MM , Corrales P , Huerta MÁ , et al. Adults with excess weight or obesity, but not with overweight, report greater pain intensities than individuals with normal weight: A systematic review and meta-analysis[J]. Front Endocrinol (Lausanne), 2024, 15 (6): 1340465.
15 Basem JI , White RS , Chen SA , et al. The effect of obesity on pain severity and pain interference[J]. Pain Manag, 2021, 11 (5): 571- 581.
doi: 10.2217/pmt-2020-0089
16 Das UN . Is obesity an inflammatory condition?[J]. Nutrition, 2001, 17 (11/12): 953- 966.
17 Nijs J , van Houdenhove B , Oostendorp RAB . Recognition of central sensitization in patients with musculoskeletal pain: Application of pain neurophysiology in manual therapy practice[J]. Man Ther, 2010, 15 (2): 135- 141.
doi: 10.1016/j.math.2009.12.001
18 Okifuji A , Hare BD . The association between chronic pain and obesity[J]. J Pain Res, 2015, 8 (6): 399- 408.
19 Nijs J , Malfliet A , Roose E , et al. Personalized multimodal life-style intervention as the best-evidenced treatment for chronic pain: State-of-the-art clinical perspective[J]. J Clin Med, 2024, 13 (3): 644.
doi: 10.3390/jcm13030644
20 Liu J , Wong SSC . Molecular mechanisms and pathophysiological pathways of high-fat diets and caloric restriction dietary patterns on pain[J]. Anesth Analg, 2023, 137 (1): 137- 152.
21 Wasser JG , Vasilopoulos T , Zdziarski LA , et al. Exercise benefits for chronic low back pain in overweight and obese individuals[J]. PM R, 2017, 9 (2): 181- 192.
doi: 10.1016/j.pmrj.2016.06.019
22 Stefanova I , Currie AC , Newton RC , et al. A meta-analysis of the impact of bariatric surgery on back pain[J]. Obes Surg, 2020, 30 (8): 3201- 3207.
doi: 10.1007/s11695-020-04713-y
23 Ross R , Neeland IJ , Yamashita S , et al. Waist circumference as a vital sign in clinical practice: A consensus statement from the IAS and ICCR working group on visceral obesity[J]. Nat Rev Endocrinol, 2020, 16 (3): 177- 189.
doi: 10.1038/s41574-019-0310-7
24 Janssen I , Katzmarzyk PT , Ross R . Waist circumference and not body mass index explains obesity-related health risk[J]. Am J Clin Nutr, 2004, 79 (3): 379- 384.
doi: 10.1093/ajcn/79.3.379
25 Kristoffersen ES , Børte S , Hagen K , et al. Migraine, obesity and body fat distribution: A population-based study[J]. J Headache Pain, 2020, 21 (1): 97.
doi: 10.1186/s10194-020-01163-w
26 Panagiotakos DB , Pitsavos C , Yannakoulia M , et al. The implication of obesity and central fat on markers of chronic inflammation: The ATTICA study[J]. Atherosclerosis, 2005, 183 (2): 308- 315.
doi: 10.1016/j.atherosclerosis.2005.03.010
27 Kim KJ , Son S , Kim KJ , et al. Weight-adjusted waist as an integrated index for fat, muscle and bone health in adults[J]. J Cachexia Sarcopenia Muscle, 2023, 14 (5): 2196- 2203.
doi: 10.1002/jcsm.13302
28 Ray L , Lipton RB , Zimmerman ME , et al. Mechanisms of association between obesity and chronic pain in the elderly[J]. Pain, 2011, 152 (1): 53- 59.
doi: 10.1016/j.pain.2010.08.043
29 Park MJ , Hwang SY , Kim NH , et al. A novel anthropometric parameter, weight-adjusted waist index represents sarcopenic obesity in newly diagnosed type 2 diabetes mellitus[J]. J Obes Metab Syndr, 2023, 32 (2): 130- 140.
doi: 10.7570/jomes23005
30 Liu H , Zhi J , Zhang C , et al. Association between weight-adjusted waist index and depressive symptoms: A nationally representative cross-sectional study from NHANES 2005 to 2018[J]. J Affect Disord, 2024, 350, 49- 57.
doi: 10.1016/j.jad.2024.01.104
31 Li J , Sun J , Zhang Y , et al. Association between weight-adjusted-waist index and cognitive decline in US elderly participants[J]. Front Nutr, 2024, 11 (6): 1390282.
32 Wright LJ , Schur E , Noonan C , et al. Chronic pain, overweight, and obesity: Findings from a community-based twin registry[J]. J Pain, 2010, 11 (7): 628- 635.
doi: 10.1016/j.jpain.2009.10.004
33 Mills SEE , Nicolson KP , Smith BH . Chronic pain: A review of its epidemiology and associated factors in population-based studies[J]. Br J Anaesth, 2019, 123 (2): e273- e283.
doi: 10.1016/j.bja.2019.03.023
34 Kaplan CM , Kelleher E , Irani A , et al. Deciphering nociplastic pain: Clinical features, risk factors and potential mechanisms[J]. Nat Rev Neurol, 2024, 20 (6): 347- 363.
[1] 龙梅娟, 王怡丹, 武诗雅, 李梓豪, 李婷延, 李阳, 焦娟. 超重和肥胖对纤维肌痛综合征患者症状、整体病情及生活质量的影响[J]. 北京大学学报(医学版), 2024, 56(6): 1001-1008.
[2] 翟佳羽, 赵金霞, 安卓, 刘蕊. 低疾病活动度的中轴型脊柱关节炎患者残留症状评估及其相关因素分析[J]. 北京大学学报(医学版), 2024, 56(6): 987-993.
[3] 何海龙,李清,徐涛,张晓威. 构建显微精索手术治疗精索疼痛的术后疼痛缓解预测模型[J]. 北京大学学报(医学版), 2024, 56(4): 646-655.
[4] 周庆欣,杨晴晴,石舒原,李沛,孙凤. 健康体检人群血尿酸与气流阻塞的相关性[J]. 北京大学学报(医学版), 2024, 56(4): 693-699.
[5] 陈敬,单蕊,肖伍才,张晓蕊,刘峥. 青春期和成年早期自制力与抑郁症状和超重肥胖共病风险的关联:基于全国调查的十年前瞻性队列研究[J]. 北京大学学报(医学版), 2024, 56(3): 397-402.
[6] 吴一凡,玉应香,谢岚,张志达,常翠青. 不同体重指数青年男性的静息能量消耗特点及预测方程评价[J]. 北京大学学报(医学版), 2024, 56(2): 247-252.
[7] 安思兰,郑群怡,王锴,高姗. 全膝关节置换术后患者早期疼痛的特点及其影响因素[J]. 北京大学学报(医学版), 2024, 56(1): 167-173.
[8] 陈楚云,孙蓬飞,赵静,贾佳,范芳芳,王春燕,李建平,姜一梦,霍勇,张岩. 北京社区人群促红细胞生成素相关因素及其与10年心血管疾病风险的关系[J]. 北京大学学报(医学版), 2023, 55(6): 1068-1073.
[9] 刘慧丽,吕彦函,王晓晓,李民. 老年患者腹腔镜泌尿系肿瘤根治术后慢性疼痛的影响因素[J]. 北京大学学报(医学版), 2023, 55(5): 851-856.
[10] 祝春素,连至炜,崔一民. 中国中老年人抑郁和慢性病的关联[J]. 北京大学学报(医学版), 2023, 55(4): 606-611.
[11] 党佳佳,蔡珊,钟盼亮,王雅琪,刘云飞,师嫡,陈子玥,张依航,胡佩瑾,李晶,马军,宋逸. 室外夜间人工光暴露与中国9~18岁儿童青少年超重肥胖的关联[J]. 北京大学学报(医学版), 2023, 55(3): 421-428.
[12] 陈敬,肖伍才,单蕊,宋洁云,刘峥. DRD2基因rs2587552多态性对儿童肥胖干预效果的影响:一项前瞻性、平行对照试验[J]. 北京大学学报(医学版), 2023, 55(3): 436-441.
[13] 马涛,李艳辉,陈曼曼,马莹,高迪,陈力,马奇,张奕,刘婕妤,王鑫鑫,董彦会,马军. 青春期启动提前与儿童肥胖类型的关联研究: 基于横断面调查和队列调查[J]. 北京大学学报(医学版), 2022, 54(5): 961-970.
[14] 朱琳,张维宇,许克新. 环磷酰胺诱导SD大鼠膀胱疼痛综合征模型的有效性[J]. 北京大学学报(医学版), 2022, 54(4): 735-740.
[15] 朱敬先,鲁胜楠,蒋艳芳,姜玲,王健全. 老年肩袖损伤手术患者术前肺功能的影响因素[J]. 北京大学学报(医学版), 2021, 53(5): 902-906.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!