北京大学学报(医学版) ›› 2025, Vol. 57 ›› Issue (2): 262-266. doi: 10.19723/j.issn.1671-167X.2025.02.006

• 论著 • 上一篇    下一篇

大鼠脑创伤半暗带光学相干断层血管造影及微血管密度定量

钟鹏1, 胡晓丹2,3, 王振洲3,*()   

  1. 1. 首都医科大学附属北京友谊医院超声医学科,北京 100050
    2. 北京大学基础医学院,北京 100191
    3. 北京大学人民医院创伤救治中心,创伤救治与神经再生教育部重点实验室(北京大学),国家创伤医学中心 100044
  • 收稿日期:2022-09-24 出版日期:2025-04-18 发布日期:2025-04-12
  • 通讯作者: 王振洲 E-mail:13522470752@163.com
  • 基金资助:
    北京大学人民医院研究与发展基金(RDJ2022-05)

Optical coherence tomography angiography and microvessel density quantification in penumbra after traumatic brain injury in rats

Peng ZHONG1, Xiaodan HU2,3, Zhenzhou WANG3,*()   

  1. 1. Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
    2. School of Basic Medical Sciences, Peking University, Beijing 100191, China
    3. Trauma Center, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration, Peking University People's Hospital, Beijing, 100044, China
  • Received:2022-09-24 Online:2025-04-18 Published:2025-04-12
  • Contact: Zhenzhou WANG E-mail:13522470752@163.com
  • Supported by:
    Grants from Peking University People' s Hospital Research and Development Funds(RDJ2022-05)

RICH HTML

  

摘要:

目的: 观察创伤性脑损伤(traumatic brain injury, TBI)大鼠急性期创伤半暗带内微血管损伤与修复的动态变化。方法: 重物坠落致去颅骨骨瓣大鼠TBI后置入封闭式透明颅窗,并设对照组。术后第0、2、4、6、8天经颅窗行光学相干断层血管造影(optical coherence tomography angiography, OCTA)成像,第1天行头部MRI检查,第2天行脑组织哌莫硝唑免疫组织化学检测。结果: MRI T2W1和免疫组织化学检测结果均显示创伤脑组织水肿和缺氧深达脑皮质全层,OCTA示TBI组和对照组两组大鼠术后脑皮质表面静脉均显著扩张迂曲,第8天恢复。TBI组有效灌注微血管密度由第0天的39.38%±4.48%最低降至第2天的27.84%±6.01%,显著低于第0、6、8天(P < 0.05);第8天最高达61.71%±7.69%,显著高于第0、2、4天(P < 0.05);TBI组有效灌注微血管密度第2天显著低于对照组(P=0.021),第8天则显著高于对照组(P=0.030)。结论: OCTA可作为TBI大鼠损伤脑皮质有效灌注微血管成像和计量方法,TBI后创伤半暗带内有效灌注微血管密度降低后逐渐恢复,在第8天显著增加。

关键词: 光学相关断层扫描, 微血管密度, 创伤性脑损伤, 大脑皮质

Abstract:

Objective: To observe the dynamic changes of microvascular injury and repair in the penumbra of traumatic brain injury (TBI) rats with effective cerebral perfusion microvascular imaging using optical coherence tomography angiography (OCTA). Methods: Transparent closed cranial windows were placed in craniotomy rats after TBI caused by weight drop. All the rats in TBI group and control group underwent head MRI examination on the first postoperative day, and the changes of cerebral cortical microvessel density were measured by OCTA through cranial windows on d0, d2, d4, d6, and d8. On the second day after the operation, the same number of rats in the two groups were selected to complete the immunohistochemical staining of brain tissue with pimonidazole, an indicator of hypoxia. Results: MRI T2W1 and immunohistochemical staining demonstrated that edema and hypoxia in the traumatic brain tissue extended deeply throughout the entire cortex. OCTA showed that the cortical surface veins of the rats in both groups were significantly dilated and tortuous after operation, and recovered to the postoperative day level on d8. The effective perfusion microvessel density of the rats in both groups gradually recovered after a temporary decrease, and the TBI group decreased from 39.38%±4.48% on d0 to 27.84%±6.01% on d2, which was significantly lower than that on d0, d6, and d8 (P < 0.05). The highest value was 61.71%±7.69% on d8, which was significantly higher than that on d0, d2, and d4 (P < 0.05). The control group decreased from 44.59%±7.78% on d0 to 36.69%±5.49% on d2, which was significantly lower than that on d0, d6, and d8 (P < 0.05). The highest value was 51.92%±5.96% on d8, which was significantly higher than that on d2, and d4 (P < 0.05). Comparing the two groups, the effective perfusion microvessel density in the TBI group was significantly lower than that in the control group on d2 (P=0.021), and significantly higher than that in the control group on d8 (P=0.030). Conclusion: OCTA can be used as a method of imaging and measurement of effective perfusion microvessels in the injured cerebral cortex of TBI rats. After TBI, the effective perfusion microvessel density in the wound penumbra gradually recovered after decreasing, and increased significantly on d8.

Key words: Tomography, optical coherence, Microvascular density, Brain injuries, traumatic, Cerebral cortex

中图分类号: 

  • R651.15

图1

TBI组和对照组大鼠术后第2天头MRI T2WI序列检查"

图2

TBI组和对照组大鼠哌莫硝唑免疫组织化学染色和缺氧程度比较"

图3

TBI组和对照组大鼠脑皮质OCTA显像和微血管密度定量"

1 Capizzi A , Woo J , Verduzco-Gutierrez M . Traumatic brain injury: An overview of epidemiology, pathophysiology, and medical management[J]. Med Clin North Am, 2020, 104 (2): 213- 238.
2 Graham DI , Adams JH . Ischaemic brain damage in fatal head injuries[J]. Lancet, 1971, 1 (7693): 265- 266.
3 Sahuquillo J , Poca MA , Amoros S . Current aspects of patho-physiology and cell dysfunction after severe head injury[J]. Curr Pharm Des, 2001, 7 (15): 1475- 1503.
doi: 10.2174/1381612013397311
4 Demers-Marcil S , Coles JP . Cerebral metabolic derangements following traumatic brain injury[J]. Curr Opin Anaesthesiol, 2022, 35 (5): 562- 569.
doi: 10.1097/ACO.0000000000001183
5 Hays L , Udy A , Adamides AA , et al. Effects of brain tissue oxygen (PbtO2) guided management on patient outcomes following severe traumatic brain injury: A systematic review and meta-analysis[J]. J Clin Neurosci, 2022, 99, 349- 358.
doi: 10.1016/j.jocn.2022.03.017
6 Reddy L , Murugan D , Mullick M , et al. Recent approaches for angiogenesis in search of successful tissue engineering and rege-neration[J]. Curr Stem Cell Res Ther, 2020, 15 (2): 111- 134.
doi: 10.2174/1574888X14666191104151928
7 Bragin DE , Bragina OA , Kameneva MV , et al. Resuscitation with drag reducing polymers after traumatic brain injury with hemor-rhagic shock reduces microthrombosis and oxidative stress[J]. Adv Exp Med Biol, 2020, 1232, 39- 45.
8 de Carlo TE , Romano A , Waheed NK , et al. A review of optical coherence tomography angiography (OCTA)[J]. Int J Retina Vitreous, 2015, 1, 5.
doi: 10.1186/s40942-015-0005-8
9 Feeney DM , Boyeson MG , Linn RT , et al. Responses to cortical injury: Ⅰ. Methodology and local effects of contusions in the rat[J]. Brain Res, 1981, 211 (1): 67- 77.
doi: 10.1016/0006-8993(81)90067-6
10 Liu X , Huang Z , Wang Z , et al. A deep learning based pipeline for optical coherence tomography angiography[J]. J Biophotonics, 2019, 12 (10): e201900008.
doi: 10.1002/jbio.201900008
11 Wang Z , Liu J , Liu X , et al. Perfusion microvessel density in the cerebral cortex of septic rats is negatively correlated with endothe-lial microparticles in circulating plasma[J]. Metab Brain Dis, 2021, 36 (5): 1029- 1036.
doi: 10.1007/s11011-021-00702-x
12 Veenith TV , Carter EL , Geeraerts T , et al. Pathophysiologic mechanisms of cerebral ischemia and diffusion hypoxia in traumatic brain injury[J]. JAMA Neurol, 2016, 73 (5): 542- 550.
doi: 10.1001/jamaneurol.2016.0091
13 Sandsmark DK , Bashir A , Wellington CL , et al. Cerebral microvascular injury: A potentially treatable endophenotype of traumatic brain injury-induced neurodegeneration[J]. Neuron, 2019, 103 (3): 367- 379.
doi: 10.1016/j.neuron.2019.06.002
14 Kenney K , Amyot F , Haber M , et al. Cerebral vascular injury in traumatic brain injury[J]. Exp Neurol, 2016, 275 (Pt 3): 353- 366.
15 Manglani M , McGavern DB . Intravital imaging of neuroimmune interactions through a thinned skull[J]. Curr Protoc Immunol, 2018, 120, 24.2.1- 24.2.12.
16 Hattori R , Komiyama T . Longitudinal two-photon calcium imaging with ultra-large cranial window for head-fixed mice[J]. STAR Protoc, 2022, 3 (2): 101343.
doi: 10.1016/j.xpro.2022.101343
17 Qin D , Wang J , Le A , et al. Traumatic brain injury: Ultrastructural features in neuronal ferroptosis, glial cell activation and polarization, and blood-brain barrier breakdown[J]. Cells, 2021, 10 (5): 1009.
18 Grutzendler J , Murikinati S , Hiner B , et al. Angiophagy prevents early embolus washout but recanalizes microvessels through embolus extravasation[J]. Sci Transl Med, 2014, 6 (226): 226ra31.
19 van der Wijk AE , Georgakopoulou T , Majolée J , et al. Microembolus clearance through angiophagy is an auxiliary mechanism preserving tissue perfusion in the rat brain[J]. Acta Neuropathol Commun, 2020, 8 (1): 195.
doi: 10.1186/s40478-020-01071-9
20 van der Wijk AE , Lachkar N , de Vos J , et al. Extravasation of microspheres in a rat model of silent brain infarcts[J]. Stroke, 2019, 50 (6): 1590- 1594.
doi: 10.1161/STROKEAHA.119.024975
21 Park E , Bell JD , Siddiq IP , et al. An analysis of regional microvascular loss and recovery following two grades of fluid percussion trauma: A role for hypoxia-inducible factors in traumatic brain injury[J]. J Cereb Blood Flow Metab, 2009, 29 (3): 575- 584.
[1] 叶珊,金萍萍,张楠,邬海博,石林,赵强,杨坤,袁慧书,樊东升. 肌萎缩侧索硬化患者认知功能改变与脑皮层厚度分析[J]. 北京大学学报(医学版), 2022, 54(6): 1158-1162.
[2] 姜茜, 姜玉武, 王静敏, 秦炯, 吴希如 . 一种改进的大鼠皮层神经元原代培养方法及其性质鉴定[J]. 北京大学学报(医学版), 2009, 41(2): 212-216.
[3] 张玉稚, 潘虹, 王汉森, 包新华, 吴希如. 发育中Wistar大鼠大脑皮层甲基化结合蛋白-2基因表达变化[J]. 北京大学学报(医学版), 2004, 36(4): 379-382.
[4] 曹海燕, 姜玉武, 何其华, 陈跃, 袁兰, 吴希如. 细胞内游离Ca2+在发育中大鼠皮层神经元无镁诱导惊厥性损伤中的作用[J]. 北京大学学报(医学版), 2003, 35(5): 466-470.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!