北京大学学报(医学版) ›› 2026, Vol. 58 ›› Issue (1): 139-144. doi: 10.19723/j.issn.1671-167X.2026.01.018

• 论著 • 上一篇    下一篇

基于非刚性配准构建三维颜面微笑仿真序列数据的方法

温奥楠1, 张晓会2, 杨咏涛3, 高梓翔1, 李文博3, 单珅瑶3, 商相宜3, 田淯文3, 郭殊玮1, 王艺蓁3, 王勇1,3,*(), 赵一姣1,3,*()   

  1. 1. 北京大学口腔医学院·口腔医院口腔医学数字化研究中心, 口腔修复教研室, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 口腔数字医学北京市重点实验室, 国家卫生健康委员会口腔数字医学重点实验室, 北京 100081
    2. 首都师范大学, 国家应用数学中心, 交叉科学研究院, 北京 100089
    3. 北京大学医学部医学技术研究院, 北京 100191
  • 收稿日期:2025-10-10 出版日期:2026-02-18 发布日期:2025-11-25
  • 通讯作者: 王勇, 赵一姣
  • 基金资助:
    国家自然科学基金(82271039); 国家重点研发计划(2022YFC2405401); 北京市自然科学基金(L232100); 北京市自然科学基金(L242132); 北京大学口腔医院实验室开放课题(PKUSS20230201)

Method of constructing 3D facial smile simulation sequence data based on non-rigid registration

Aonan WEN1, Xiaohui ZHANG2, Yongtao YANG3, Zixiang GAO1, Wenbo LI3, Shenyao SHAN3, Xiangyi SHANG3, Yuwen TIAN3, Shuwei GUO1, Yizhen WANG3, Yong WANG1,3,*(), Yijiao ZHAO1,3,*()   

  1. 1. Center of Digital Dentistry, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology, Beijing 100081, China
    2. National Center for Applied Mathematics, Academy for Multidisciplinary Studies, Capital Normal University, Beijing 100089, China
    3. Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
  • Received:2025-10-10 Online:2026-02-18 Published:2025-11-25
  • Contact: Yong WANG, Yijiao ZHAO
  • Supported by:
    the National Natural Science Foundation of China(82271039); the National Key Research and Development Program of China(2022YFC2405401); the Beijing Natural Science Foundation(L232100); the Beijing Natural Science Foundation(L242132); the Open Subject Foundation of Peking University School and Hospital of Stomatology(PKUSS20230201)

RICH HTML

  

摘要:

目的: 建立一种基于微笑静态起始和终止颜面数据构建颜面微笑仿真序列数据的方法, 初步评价该方法的准确性和可行性。方法: 使用动态颜面扫描设备3dMD采集受试者由中性表情进行微笑的颜面动态数据。使用本课题组提出的普氏分析非刚性迭代最近点算法(Procrustes analysis non-rigid iterative closest point, PA-NICP)将结构化的三维人脸模板分别变形配准至微笑起始颜面数据和微笑终止颜面数据上, 获得二者结构化的同源数据。在MATLAB软件中, 计算起始和终止两同源数据间的对应顶点位移量, 通过线性插值生成三角面片拓扑结构一致的中间过渡数据, 从而构建出颜面微笑仿真序列数据。以真实采集的颜面动态数据作为参考数据, 以本方法构建的仿真序列数据作为测试数据, 评价微笑过程中多个时间点的三维形态偏差, 评价本方法构建微笑仿真序列数据的准确性。结果: 本方法构建了男性和女性各1名受试者的三维颜面微笑仿真序列数据, 男性受试者仿真序列数据构建的平均三维形态偏差为(0.31±0.04) mm, 女性受试者仿真序列数据构建的平均三维形态偏差为(0.44±0.08) mm。结论: 基于PA-NICP配准算法, 可实现颜面微笑仿真序列数据的构建, 其中间过渡数据可基于插值函数进行参数化构建和调整, 为口腔美学修复设计、治疗效果评估和医患沟通等提供了一种新的动态颜面数据生成方法。

关键词: 美学, 牙科, 面部表情, 微笑, 三维成像, 结构化数据, 同源数据, 虚拟仿真

Abstract:

Objective: To propose a novel method for constructing facial smile simulation sequence data based on static three-dimensional (3D) facial data captured at the start and end of smiling, and to preliminarily evaluate the accuracy and feasibility of the proposed method. Methods: The 3D dynamic facial data of participants transitioning from a neutral expression to a maximum smile were captured using the 3dMD dynamic facial scanning system. A structured 3D face template was deformed and registered to both the smile starting and ending facial data using the Procrustes analysis non-rigid iterative closest point (PA-NICP) registration algorithm developed by our research group, obtaining two sets of structured homologous data. In MATLAB software, the vertex displacements between the corresponding points of the starting and ending homologous datasets were calculated, and intermediate transitional data with a consistent triangular mesh topology were generated through linear interpolation, thereby constructing the facial smile simulation sequence data. The real 3D dynamic facial data captured from the 3dMD system were used as reference data, and the simulation sequence data constructed in this study were used as test data. The 3D morphological deviations between the reference and test data at multiple time points during the smiling process were calculated to evaluate the accuracy of the constructed smile simulation sequence data. Results: The 3D facial smile simulation sequence data were successfully constructed for one male and one female participants. The average 3D morphological deviation for the simulated sequence of the male participant was (0.31±0.04) mm, and the average 3D morphological deviation for the simulated sequence of the female participant was (0.44±0.08) mm. Conclusion: Based on the PA-NICP registration algorithm, the construction of facial smile simulation sequence data can be achieved. The intermediate transitional data can be parametrically generated and flexibly adjusted using interpolation functions, providing a novel method for 3D dynamic facial data generation that supports esthetic prosthodontic design, treatment outcome evaluation, and communication between clinicians and patients.

Key words: Esthetics, dental, Facial expression, Smiling, Three-dimensional imaging, Structured data, Homologous data, Virtual simulation

中图分类号: 

  • R783

图1

受试者微笑过程的颜面动态数据示意图"

图2

颜面微笑仿真序列数据构建方法的流程图"

图3

微笑仿真序列数据构建的三维形态偏差"

图4

受试者三维颜面微笑仿真序列数据构建效果的示意图"

1
Jafri Z , Ahmad N , Sawai M , et al. Digital smile design: An innovative tool in aesthetic dentistry[J]. J Oral Biol Craniofac Res, 2020, 10 (2): 194- 198.

doi: 10.1016/j.jobcr.2020.04.010
2
Alharkan HM . Integrating digital smile design into restorative dentistry: A narrative review of the applications and benefits[J]. Saudi Dent J, 2024, 36 (4): 561- 567.

doi: 10.1016/j.sdentj.2023.12.014
3
Sabbah A . Smile analysis: Diagnosis and treatment planning[J]. Dent Clin North Am, 2022, 66 (3): 307- 341.

doi: 10.1016/j.cden.2022.03.001
4
Alhammadi MS , Halboub E , Al-Mashraqi AA , et al. Perception of facial, dental, and smile esthetics by dental students[J]. J Esthet Restor Dent, 2018, 30 (5): 415- 426.

doi: 10.1111/jerd.12405
5
苏佳峰, 武峰, 罗晓晋. 数码微笑设计在前牙美学修复中的应用[J]. 中国实用口腔科杂志, 2016, 9 (10): 632- 634.
6
刘云松, 叶红强, 谷明, 等. 患者参与的数字化设计在前牙美学修复中的应用[J]. 北京大学学报(医学版), 2014, 46 (1): 90- 94.
7
叶红强, 柳玉树, 王冠博, 等. 三维数字化仿真设计与实现技术在前牙美学修复中的应用[J]. 中华口腔医学杂志, 2020, 55 (10): 729- 736.
8
Ye H , Wang KP , Liu Y , et al. Four-dimensional digital prediction of the esthetic outcome and digital implementation for rehabilitation in the esthetic zone[J]. J Prosthet Dent, 2020, 123 (4): 557- 563.

doi: 10.1016/j.prosdent.2019.04.007
9
Wright C, Benington P, Ju X, et al. The correlation between static and dynamic facial asymmetry in unilateral cleft lip and palate [J/OL]. Cleft Palate Craniofac J, 2024: 1055665624 1298143. [2024-11-14]. https://pubmed.ncbi.nlm.nih.gov/39539143/.
10
Quast A , Sadlonova M , Asendorf T , et al. The impact of orthodontic-surgical treatment on facial expressions: A four-dimensional clinical trial[J]. Clin Oral Investig, 2023, 27 (10): 5841- 5851.

doi: 10.1007/s00784-023-05195-9
11
Wen A , Zhang X , Wang Y , et al. Constructing nasal prosthesis morphological data based on a nonrigid registration algorithm[J]. J Prosthet Dent, 2025, 134 (3): 864. e1- 864. e8.

doi: 10.1016/j.prosdent.2025.02.056
12
温奥楠, 朱玉佳, 郑盛文, 等. 基于三维人脸模板的颜面解剖标志点自动定点方法初探[J]. 中华口腔医学杂志, 2022, 57 (4): 358- 365.
13
Miyazaki J , Kondo S , Tanijiri T , et al. Morphological differences between the first and second maxillary premolar crowns: A three-dimensional surface homologous modeling analysis[J]. J Oral Biosci, 2024, 66 (1): 20- 25.

doi: 10.1016/j.job.2024.01.010
14
Matsumura H , Tanijiri T , Kouchi M , et al. Global patterns of the cranial form of modern human populations described by analysis of a 3D surface homologous model[J]. Sci Rep, 2022, 12 (1): 13826.

doi: 10.1038/s41598-022-15883-3
15
Kroczek LOH , Mühlberger A . Returning a smile: Initiating a social interaction with a facial emotional expression influences the evaluation of the expression received in return[J]. Biol Psychol, 2022, 175, 108453.

doi: 10.1016/j.biopsycho.2022.108453
16
Beamish AJ , Foster JJ , Edwards H , et al. What's in a smile? A review of the benefits of the clinician's smile[J]. Postgrad Med J, 2019, 95 (1120): 91- 95.

doi: 10.1136/postgradmedj-2018-136286
17
Thomas PA , Krishnamoorthi D , Mohan J , et al. Digital smile design[J]. J Pharm Bioallied Sci, 2022, 14 (Suppl 1): S43- S49.

doi: 10.4103/jpbs.jpbs_164_22
18
Mai HN , Lee DH . Accuracy of mobile device-compatible 3D scanners for facial digitization: Systematic review and meta-analysis[J]. J Med Internet Res, 2020, 22 (10): e22228.

doi: 10.2196/22228
19
Cho RY , Byun SH , Yi SM , et al. Comparative analysis of three facial scanners for creating digital twins by focusing on the difference in scanning method[J]. Bioengineering (Basel), 2023, 10 (5): 545.

doi: 10.3390/bioengineering10050545
20
Zhao YJ , Xiong YX , Wang Y . Three-dimensional accuracy of facial scan for facial deformities in clinics: A new evaluation method for facial scanner accuracy[J]. PLoS One, 2017, 12 (1): e0169402.

doi: 10.1371/journal.pone.0169402
21
温奥楠, 刘微, 柳大为, 等. 5种椅旁三维颜面扫描技术正确度的初步评价[J]. 北京大学学报(医学版), 2023, 55 (2): 343- 350.

doi: 10.19723/j.issn.1671-167X.2023.02.021
22
Luo Y , Zhao M , Lu J . Accuracy of smartphone-based three-dimensional facial scanning system: A systematic review[J]. Aesthetic Plast Surg, 2024, 48 (21): 4500- 4512.

doi: 10.1007/s00266-024-04121-y
23
Tarkan H . Evaluation of the accuracy and usability of facial scans obtained with smartphones by different users[J]. Am J Orthod Dentofacial Orthop, 2025, 168 (3): 285- 296.

doi: 10.1016/j.ajodo.2025.03.009
24
White JD , Ortega-Castrillón A , Matthews H , et al. MeshMonk: Open-source large-scale intensive 3D phenotyping[J]. Sci Rep, 2019, 9 (1): 6085.

doi: 10.1038/s41598-019-42533-y
25
Deng Y, Yang J, Xu S, et al. Accurate 3D face reconstruction with weakly-supervised learning: From single image to image set [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach, CA: IEEE, 2019: 285-295.
26
Feng Y, Wu F, Shao X, et al. Joint 3D face reconstruction and dense alignment with position map regression network [C]//Computer Vision-ECCV 2018. Cham: Springer International Publi-shing, 2018: 557-574.
27
Fathallah M , Eletriby S , Alsabaan M , et al. Advanced 3D face reconstruction from single 2D images using enhanced adversarial neural networks and graph neural networks[J]. Sensors (Basel), 2024, 24 (19): 6280.

doi: 10.3390/s24196280
28
Lium O , Kwon YB , Danelakis A , et al. Robust 3D face reconstruction using one/two facial images[J]. J Imag, 2021, 7 (9): 169.

doi: 10.3390/jimaging7090169
[1] 肖宇嘉, 毛渤淳, 周彦恒. 姿势性微笑的三维形态学研究[J]. 北京大学学报(医学版), 2025, 57(5): 989-995.
[2] 凌晓彤,屈留洋,郑丹妮,杨静,闫雪冰,柳登高,高岩. 牙源性钙化囊肿与牙源性钙化上皮瘤的三维影像特点[J]. 北京大学学报(医学版), 2024, 56(1): 131-137.
[3] 张雯,刘筱菁,李自力,张益. 基于解剖标志的鼻翼基底缩窄缝合术对正颌患者术后鼻唇部形态的影响[J]. 北京大学学报(医学版), 2023, 55(4): 736-742.
[4] 温奥楠,刘微,柳大为,朱玉佳,萧宁,王勇,赵一姣. 5种椅旁三维颜面扫描技术正确度的初步评价[J]. 北京大学学报(医学版), 2023, 55(2): 343-350.
[5] 邱天成,刘筱菁,薛竹林,李自力. 基于三维动态照相机的正常人面部表情可重复性研究[J]. 北京大学学报(医学版), 2020, 52(6): 1107-1111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!