北京大学学报(医学版) ›› 2016, Vol. 48 ›› Issue (4): 584-589. doi: 10.3969/j.issn.1671-167X.2016.04.003

• 论著 • 上一篇    下一篇

舒尼替尼通过抑制Akt/mTOR信号通路诱导肾癌细胞自噬

曹珮1,姜学军2,席志军1△   

  1. (1. 北京大学第一医院泌尿外科,北京大学泌尿外科研究所, 北京100034; 2. 中国科学院微生物研究所, 北京100101)
  • 出版日期:2016-08-18 发布日期:2016-08-18
  • 通讯作者: 席志军 E-mail:xizhijun@hsc.pku.edu.cn
  • 基金资助:

    国家自然科学基金(81272829)资助

Sunitinib induces autophagy via suppressing Akt/mTOR pathway in renal cell carcinoma

CAO Pei1, JIANG Xue-jun2, XI Zhi-jun1△   

  1. (1. Department of Urology, Peking University First Hospital; Institute of Urology, Peking University, Beijing 100034,China; 2. Institute of Microbiology, Chinese Academy of Science, Beijing 100101, China)
  • Online:2016-08-18 Published:2016-08-18
  • Contact: XI Zhi-jun E-mail:xizhijun@hsc.pku.edu.cn
  • Supported by:

    Supported by the National Natural Science Foundation of China (81272829)

摘要:

目的:研究舒尼替尼引起的肾癌细胞出现细胞自噬的机制。方法:以肾癌细胞系ACHN细胞为细胞模型,利用3-(4,5-二甲基)-5-(3-羧甲基苯环)-2-(4-硫基苯)-2H四唑盐复合物[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium,innersalt,MTS]检测法观察舒尼替尼对ACHN 细胞活性的影响;应用RNA干扰技术敲降自噬相关蛋白Beclin1和微管相关蛋白1轻链3融合蛋白(microtubule associated protein 1 light chain 3 fusion protein, LC3)检测自噬与舒尼替尼引起的细胞凋亡。使用电子显微镜和荧光显微镜观察在舒尼替尼作用下自噬体的形成;蛋白质免疫印迹检测舒尼替尼对LC3-Ⅱ的积累,自噬相关信号通路蛋白激酶B(protein kinase B, PKB/Akt)、哺乳动物雷帕霉素受体( mammalian target of rapamycin, mTOR) 及聚腺苷二磷酸核糖聚合酶( poly ADP-ribose polymerase,PARP) 切割的变化和过量表达,以及敲降Akt检测诱导自噬的变化。结果: 舒尼替尼能显著抑制ACHN的细胞活性,这种作用具有时间和浓度依赖性;敲降自噬相关蛋白Beclin1和LC3减少自噬可改变舒尼替尼引起PARP的切割;透射和荧光显微镜观察结果表明,舒尼替尼引起细胞自噬体明显增加;蛋白质免疫印迹结果显示舒尼替尼增加自噬同时减少了Akt/mTOR的磷酸化。过量表达持续活化的Akt抑制了该化合物引起的自噬,而敲降Akt可促进自噬发生。mTOR抑制剂雷帕霉素能上调舒尼替尼引起的自噬并促进细胞活性的丢失。结论:舒尼替尼通过抑制Akt/mTOR信号通路促进肾癌细胞ACHN的自噬,其诱导的自噬与凋亡有关。

关键词: 癌,肾细胞, 细胞自噬, 细胞凋亡, 舒尼替尼, 信号传导

Abstract:

Objective: To determine the mechanism of sunitinib-induced autophagy in renal cell carcinoma cells. Methods: MTS assay was applied to detect the cell viability alteration under the treatment of sunitinib (2, 8 μmol/L). The sunitinib-induced autophagy as well as cell apoptosis was measured and compared after knocking down autophagy-related protein Beclin1 and microtubule associated protein 1 light chain 3 fusion protein (LC3) by RNA interference. The transmission electron microscope was used to observe the formation of autophagosomes in ACHN cells. The fluorescence microscope was used to monitor distribution and aggregation of endogenous LC3-Ⅱ. The expressions of protein such as LC3-Ⅱ, the autophagic regulation molecules protein kinase B/ mammalian target of rapamycin (Akt/mTOR) and the symbol of apoptosis poly ADP-ribose polymerase (PARP) were capable to be detected by immunoblotting assay. Results: Sunitinib was able to significantly trigger cell viability loss in the renal carcinoma cell ACHN, which was both in a concentration-dependent and time-dependent manner (P<0.05). After reducing the autophagy by knocking down Beclin1 and LC3, the number of cleavage of PARP was increased remarkably, whereas there was nearly not any cleavage in the mock group. By the transmission electron microscope, there were more autophagic vacuoles in ACHN cells after being administrated with sunitininb compared with the control. And the nuclear-to-cytosol translocation as well as aggregation of LC3-Ⅱ was presented after sunitinib treatment by the fluorescence microscope, which was the proof of the enhanced autophagy. According to the immunoblotting, sunitinib was able to increase the accumulation of LC3-Ⅱ. At the same time, the result of sunitinib combined with chloroquine, a drug which blocked the fusion of autophagosomes and lysosomes, demonstrated that the increasing amount of LC3-Ⅱ was due to the enhanced autophagy flux by sunitinib treatment in ACHN cells. However, phosphorylation of Akt as well as mTOR was decreased at the same time. The rapamycin (mTOR inhibitor) or knocking down Akt subunits could change the sunitinib-induced LC3-Ⅱ accumulation, whereas overexpression of Akt subunits decreased the autophagic flux, indicating that Akt/mTOR was the target of sunitinib in autophagy. Conclusion: Sunitinib induced autophagy via suppressing Akt/mTOR pathway, and the auto-phagy was involved in apopotosis.

Key words: Carcinoma, renal cell, Autophagy, Apoptosis, Sunitinib, Signal transduction

中图分类号: 

  •  
[1] 刘耘充,吴宗龙,葛力源,杜坦,吴雅倩,宋一萌,刘承,马潞林. 肾透明细胞癌中核蛋白1对阿昔替尼耐药的作用及机制[J]. 北京大学学报(医学版), 2023, 55(5): 781-792.
[2] 李峥,王霄,洪天配,王浩杰,高展翼,万蒙. 晚期糖基化终末产物抑制大鼠外周血单个核细胞及成骨细胞增殖的作用机制[J]. 北京大学学报(医学版), 2021, 53(2): 355-363.
[3] 耿良,吕静,范敬. 肺瘤平膏联合环磷酰胺化疗对肺癌的抑瘤作用和酸性微环境的影响[J]. 北京大学学报(医学版), 2020, 52(2): 247-253.
[4] 孙静,宋卫东,闫思源,席志军. 氯喹抑制肾癌细胞活性促进舒尼替尼诱导的细胞凋亡[J]. 北京大学学报(医学版), 2018, 50(5): 778-784.
[5] 王昊,陈亮,叶小云. 雷公藤甲素对TM4细胞氧化应激及PI3K/AKT通路的影响[J]. 北京大学学报(医学版), 2018, 50(4): 607-612.
[6] 王玉洁,郭向阳,王军. 重复异丙酚麻醉对新生大鼠海马细胞凋亡及远期学习记忆能力的影响[J]. 北京大学学报(医学版), 2017, 49(2): 310-314.
[7] 杨光,程庆砾,李春霖,贾雅丽,岳文,裴雪涛,刘洋,赵佳慧,杜婧,敖强国. 高糖减弱肾组织干细胞条件培养液对缺氧损伤肾小管上皮细胞的修复作用[J]. 北京大学学报(医学版), 2017, 49(1): 125-130.
[8] 郭倩,陈绪勇,苏茵. 白细胞介素2信号通路相关分子与系统性红斑狼疮[J]. 北京大学学报(医学版), 2016, 48(6): 1100-1104.
[9] 李刚,张洪宪,王云鹏,张径,洪锴,田晓军,马潞林. 间苯三酚对大鼠肾缺血再灌注损伤的保护作用[J]. 北京大学学报(医学版), 2015, 47(5): 743-748.
[10] 郑少强, 陈雪, 王雅杰, 安立新. 七氟烷对幼鼠脑细胞凋亡和远期学习记忆功能的影响[J]. 北京大学学报(医学版), 2015, 47(4): 674-678.
[11] 王竹青, 王苹, 吴雅慧, 叶晓茜, 黄尚志, 石冰, 王科, 袁园, 刘冬静, 吴涛, 王红, Terri H. Beaty. 中国人群转化生长因子β信号通路上的基因多态性与非综合征型唇腭裂的关联研究[J]. 北京大学学报(医学版), 2015, 47(3): 384-389.
[12] 常思佳,邹晓英,庄姮,岳林,高学军. 激活Notch信号通路可延迟人牙髓细胞的老化表现[J]. 北京大学学报(医学版), 2014, 46(1): 5-11.
[13] 温静,程庆砾,马强,齐云,赵佳慧,杜婧,王小丹,刘胜,李美花,张晓英. 肾组织干细胞对人肾小管上皮细胞损伤修复的作用[J]. 北京大学学报(医学版), 2013, 45(4): 619-.
[14] 葛立宏△,王旭. 多生牙发生的分子生物学研究进展[J]. 北京大学学报(医学版), 2013, 45(4): 661-.
[15] 杨轩, 袁栋栋, 姜学军, 席志军. 顺铂通过诱导膀胱癌细胞自噬促进细胞凋亡[J]. 北京大学学报(医学版), 2013, 45(2): 221-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!