北京大学学报(医学版) ›› 2021, Vol. 53 ›› Issue (5): 877-882. doi: 10.19723/j.issn.1671-167X.2021.05.011
吴浩,潘利平,刘恒,塔拉提百克·买买提居马,王洪彬,宁太国,曹永平()
WU Hao,PAN Li-ping,LIU Heng,WANG Hong-bin,NING Tai-guo,CAO Yong-ping()
摘要:
目的: 研究分析胫骨假体在矢状面上的位置对牛津(Oxford)单髁置换术后膝关节功能的影响。方法: 回顾性分析2016年1月1日至2020年5月31于北京大学第一医院骨科行膝关节内侧间室单髁置换术的患者。依据术后胫骨假体后倾角度(posterior tibial slope,PTS), 将患者分为PTS标准组(PTS≥3°且PTS<8°)及PTS异常组(PTS<3°或PTS≥8°)。患者随访至少12个月,比较两组病例术后膝关节协会临床评分(Knee Society Clinical Score,KSS-C)、膝关节协会功能评分(Knee Society Functional Score,KSS-F)及膝关节活动范围,并评估手术前后PTS变化值与术后KSS-C评分、KSS-F评分及膝关节活动范围的相关性。结果: 共纳入72例患者(82膝),其中PTS标准组51例患者(58膝)、PTS异常组21例患者(24膝),所有患者均完成随访,中位随访时间23.6个月。两组病例的一般资料(性别、年龄、体重指数)、术前膝关节活动范围、术前KSS-C评分及KSS-F评分差异无统计学意义(P>0.01)。术后12个月随访时,所有病例在膝关节活动范围、KSS-C评分及KSS-F评分上均较术前显著改善(P<0.01)。两组病例在术后KSS-C评分上差异有统计学意义[PTS标准组(88.76±2.79)vs. PTS异常组(84.42±3.35),P<0.01],但在术后KSS-F评分、膝关节活动范围上差异无统计学意义(P>0.01)。另外,手术前后PTS的变化值与术后KSS-C评分(r=-0.034,95%CI:-0.247 ~ 0.186,P=0.759)、KSS-F评分(r=-0.014,95%CI:-0.238 ~ 0.198,P=0.901)及膝关节活动范围(r=0.045,95%CI:-0.214 ~ 0.302,P=0.686)无相关性。结论: 膝关节单髁置换术中采用3°~<8°的PTS可以使患者获得更好的术后功能,术中应避免胫骨假体PTS的过度增大或减小。
中图分类号:
[1] |
Burn E, Sanchez-Santos MT, Pandit HG, et al. Ten-year patient-reported outcomes following total and minimally invasive unicom-partmental knee arthroplasty: A propensity score-matched cohort analysis [J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(5):1455-1464.
doi: 10.1007/s00167-016-4404-7 |
[2] | Bottomley N, Jones LD, Rout R, et al. A survival analysis of 1084 knees of the Oxford unicompartmental knee arthroplasty: A comparison between consultant and trainee surgeons [J]. Bone Joint J, 2016, 98(Supple 10):22-27. |
[3] | Hamilton TW, Pandit HG, Inabathula A, et al. Unsatisfactory outcomes following unicompartmental knee arthroplasty in patients with partial thickness cartilage loss: A medium-term follow-up [J]. Bone Joint J, 2017, 99(4):475-482. |
[4] |
Gulati A, Pandit H, Jenkins C, et al. The effect of leg alignment on the outcome of unicompartmental knee replacement [J]. J Bone Joint Surg Br, 2009, 91(4):469-474.
doi: 10.1302/0301-620X.91B4.22105 pmid: 19336806 |
[5] |
Rivière C, Harman C, Leong A, et al. Kinematic alignment technique for medial OXFORD UKA: An in-silico study [J]. Orthop Traumatol Surg Res, 2019, 105(1):63-70.
doi: 10.1016/j.otsr.2018.11.005 |
[6] | Pandit H, Hamilton TW, Jenkins C, et al. The clinical outcome of minimally invasive phase 3 Oxford unicompartmental knee arthroplasty: A 15-year follow-up of 1 000 UKAs [J]. Bone Joint J, 2015, 97(11):1493-1500. |
[7] |
Yoo JH, Chang CB, Shin KS, et al. Anatomical references to assess the posterior tibial slope in total knee arthroplasty: a comparison of 5 anatomical axes [J]. J Arthroplasty, 2008, 23(4):586-592.
doi: 10.1016/j.arth.2007.05.006 |
[8] |
Price AJ, Svard U. A second decade lifetable survival analysis of the Oxford unicompartmental knee arthroplasty [J]. Clin Orthop Relat Res, 2011, 469(1):174-179.
doi: 10.1007/s11999-010-1506-2 |
[9] |
Murray DW, Goodfellow JW, O'Connor JJ. The Oxford medial unicompartmental arthroplasty: A ten-year survival study [J]. J Bone Joint Surg Br, 1998, 80(6):983-989.
pmid: 9853489 |
[10] |
Slaven SE, Cody JP, Sershon RA, et al. The impact of coronal alignment on revision in medial fixed-bearing unicompartmental knee arthroplasty [J]. J Arthroplasty, 2020, 35(2):353-357.
doi: S0883-5403(19)30921-0 pmid: 31668526 |
[11] | Zhu GD, Guo WS, Zhang QD, et al. Finite element analysis of mobile-bearing unicompartmental knee arthroplasty: The influence of tibial component coronal alignment [J]. Chin Med J (Engl), 2015, 128(21):2873-2878. |
[12] | 马路遥, 郭万首, 张启栋. 胫骨假体后倾对Oxford单髁关节置换术后短期临床结果的影响 [J]. 中华外科杂志, 2017, 55(6):430-434. |
[13] | 马广文, 黄斐, 吴云峰, 等. 胫骨后倾截骨对活动平台单髁关节置换术疗效的影响 [J]. 中华骨与关节外科杂志, 2017, 10(4):302-304. |
[14] |
Hernigou P, Deschamps G. Posterior slope of the tibial implant and the outcome of unicompartmental knee arthroplasty [J]. J Bone Joint Surg Am, 2004, 86(3):506-511.
doi: 10.2106/00004623-200403000-00007 |
[15] | Chatellard R, Sauleau V, Colmar M, et al. Medial unicompartmental knee arthroplasty: Does tibial component position influence clinical outcomes and arthroplasty survival? [J]. Orthop Traumatol Surg Res, 2013, 99(Suppl 4):219-225. |
[16] |
Sekiguchi K, Nakamura S, Kuriyama S, et al. Effect of tibial component alignment on knee kinematics and ligament tension in medial unicompartmental knee arthroplasty [J]. Bone Joint Res, 2019, 8(3):126-135.
doi: 10.1302/2046-3758.83.BJR-2018-0208.R2 pmid: 30997038 |
[17] |
Sawatari T, Tsumura H, Iesaka K, et al. Three-dimensional finite element analysis of unicompartmental knee arthroplasty: The influence of tibial component inclination [J]. J Orthop Res, 2005, 23(3):549-554.
pmid: 15885474 |
[18] |
Inoue S, Akagi M, Asada S, et al. The valgus inclination of the tibial component increases the risk of medial tibial condylar fractures in unicompartmental knee arthroplasty [J]. J Arthroplasty, 2016, 31(9):2025-2030.
doi: 10.1016/j.arth.2016.02.043 |
[19] |
Hanada M, Hotta K, Matsuyama Y. Dependence of knee range of motion on the alignment of femoral and tibial components after medial unicompartmental knee arthroplasty [J]. Eur J Orthop Surg Traumatol, 2021, 31(2):291-298.
doi: 10.1007/s00590-020-02770-8 |
[20] |
Weber P, Schröder C, Schmidutz F, et al. Increase of tibial slope reduces backside wear in medial mobile bearing unicompartmental knee arthroplasty [J]. Clin Biomech (Bristol, Avon), 2013, 28(8):904-909.
doi: 10.1016/j.clinbiomech.2013.08.006 |
[21] |
Nunley RM, Nam D, Johnson SR, et al. Extreme variability in posterior slope of the proximal tibia: Measurements on 2 395 CT scans of patients undergoing UKA? [J]. J Arthroplasty, 2014, 29(8):1677-1680.
doi: 10.1016/j.arth.2014.03.024 pmid: 24768545 |
[22] |
Lo Presti M, Raspugli GF, Reale D, et al. Early failure in medial unicondylar arthroplasty: Radiographic analysis on the importance of joint line restoration [J]. J Knee Surg, 2019, 32(9):860-865.
doi: 10.1055/s-0038-1669448 pmid: 30212918 |
[23] | Weber P, Woiczinski M, Steinbrück A, et al. Increase in the tibial slope in unicondylar knee replacement: Analysis of the effect on the kinematics and ligaments in a weight-bearing finite element model [J]. Biomed Res Int, 2018, 2018:8743604. |
[24] | Khow YZ, Liow MHL, Lee M, et al. Posterior condylar offset and posterior tibial slope targets to optimize knee flexion after unicom-partmental knee arthroplasty [J/OL]. Knee Surg Sports Traumatol Arthrosc, 2021, 1 (2021-01-29) [2021-04-15]. https://pubmed.ncbi.nlm.nih.gov/33512542 . |
No related articles found! |
|