北京大学学报(医学版) ›› 2024, Vol. 56 ›› Issue (3): 512-518. doi: 10.19723/j.issn.1671-167X.2024.03.019
柴晓东1,2,孙子文1,李海爽1,朱靓怡1,刘小旦1,2,刘延涛1,裴斐1,2,*(),常青3,*()
Xiaodong CHAI1,2,Ziwen SUN1,Haishuang LI1,Liangyi ZHU1,Xiaodan LIU1,2,Yantao LIU1,Fei PEI1,2,*(),Qing CHANG3,*()
摘要:
目的: 研究CD8+T细胞在髓母细胞瘤(medulloblastoma, MB)各个分子亚型中的浸润特点,分析CD8+T细胞浸润与患者预后的关系,以及C-X-C基序趋化因子11(C-X-C motif chemokine ligand 11)的表达及其受体CXCR3在CD8+ T细胞中的表达情况,为进一步探索MB中CD8+T细胞浸润可能的调节机制提供临床病理依据。方法: 筛选2012—2019年间来自多所医学中心、具有完整临床资料的MB患者共48例(4个分子亚型各12例),利用NanoString PanCancer IO360TM基因表达检测平台对48例MB患者的肿瘤标本进行转录组学分析,对患者肿瘤组织的石蜡切片进行CD8免疫组织化学染色分析,验证各亚型MB中CD8+T细胞数量的差异。通过数据库生物信息学分析,探讨CD8+T细胞浸润与患者预后的关系及各种趋化因子在各亚型MB中的表达差异,并采用双重免疫荧光染色验证MB中CD8+T细胞表面CXCR3受体的表达情况,探讨CD8+T细胞浸润至肿瘤内的可能分子机制。结果: MB的WNT亚型中的CD8+T细胞特征指数相对较高,提示WNT亚型中的CD8+T细胞数量显著高于其他三个亚型,这一现象通过CD8免疫组织化学染色方法以及R2在线数据分析平台对美国基因表达数据库Gene Expression Omnibus (GEO)进行数据挖掘得到了证实,且CD8+T细胞增多与患者的生存期呈正相关。数据库分析显示,CXCL11在WNT亚型MB中的表达量明显高于其他三个亚型。免疫荧光染色结果显示,CD8+T细胞表面存在CXCL11的受体CXCR3,提示CD8+T细胞可能通过表面受体CXCR3受CXCL11趋化至MB的微环境中。结论: CD8+T细胞在WNT亚型MB中的浸润相对多于其他亚型,其机制可能与CXCL11-CXCR3趋化因子系统的激活相关,且肿瘤内CD8+T细胞浸润较多的患者预后较好,此结果可能为MB中CD8+T细胞浸润调节机制提供有益的临床病理依据,为未来MB的免疫治疗提供新的潜在治疗靶点。
中图分类号:
1 | Ostrom QT , Cioffi G , Gittleman H , et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016[J]. Neuro Oncol, 2019, 21 (Suppl 5): v1- v100. |
2 | Ostrom QT , Cioffi G , Waite K , et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018[J]. Neuro Oncol, 2021, 23 (12 Suppl 2): iii1- iii105. |
3 |
Wen PY , Packer RJ . The 2021 WHO classification of tumors of the central nervous system: Clinical implications[J]. Neuro Oncol, 2021, 23 (8): 1215- 1217.
doi: 10.1093/neuonc/noab120 |
4 |
Szalontay L , Khakoo Y . Medulloblastoma: An old diagnosis with new promises[J]. Curr Oncol Rep, 2020, 22 (9): 90.
doi: 10.1007/s11912-020-00953-4 |
5 |
Stadskleiv K , Stensvold E , Stokka K , et al. Neuropsychological functioning in survivors of childhood medulloblastoma/CNS-PNET: The role of secondary medical complications[J]. Clin Neuropsychol, 2022, 36 (3): 600- 625.
doi: 10.1080/13854046.2020.1794045 |
6 |
Vatner RE , Niemierko A , Misra M , et al. Endocrine deficiency as a function of radiation dose to the hypothalamus and pituitary in pediatric and young adult patients with brain tumors[J]. J Clin Oncol, 2018, 36 (28): 2854- 2862.
doi: 10.1200/JCO.2018.78.1492 |
7 |
Hu M , Huang L . Strategies targeting tumor immune and stromal microenvironment and their clinical relevance[J]. Adv Drug Deliv Rev, 2022, 183, 114137.
doi: 10.1016/j.addr.2022.114137 |
8 |
Bockmayr M , Mohme M , Klauschen F , et al. Subgroup-specific immune and stromal microenvironment in medulloblastoma[J]. Oncoimmunology, 2018, 7 (9): e1462430.
doi: 10.1080/2162402X.2018.1462430 |
9 |
Grabovska Y , Mackay A , O'Hare P , et al. Pediatric pan-central nervous system tumor analysis of immune-cell infiltration identifies correlates of antitumor immunity[J]. Nat Commun, 2020, 11 (1): 4324.
doi: 10.1038/s41467-020-18070-y |
10 |
Riemondy KA , Venkataraman S , Willard N , et al. Neoplastic and immune single-cell transcriptomics define subgroup-specific intra-tumoral heterogeneity of childhood medulloblastoma[J]. Neuro Oncol, 2022, 24 (2): 273- 286.
doi: 10.1093/neuonc/noab135 |
11 | Diao S , Gu C , Zhang H , et al. Immune cell infiltration and cytokine secretion analysis reveal a non-inflammatory microenvironment of medulloblastoma[J]. Oncol Lett, 2020, 20 (6): 397. |
12 |
Colvin RA , Campanella GS , Sun J , et al. Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function[J]. J Biol Chem, 2004, 279 (29): 30219- 30227.
doi: 10.1074/jbc.M403595200 |
13 |
Karin N . CXCR3 ligands in cancer and autoimmunity, chemoattraction of effector T cells, and beyond[J]. Front Immunol, 2020, 11, 976.
doi: 10.3389/fimmu.2020.00976 |
14 |
Vollmer T , Schlickeiser S , Amini L , et al. The intratumoral CXCR3 chemokine system is predictive of chemotherapy response in human bladder cancer[J]. Sci Transl Med, 2021, 13 (576): eabb3735.
doi: 10.1126/scitranslmed.abb3735 |
15 |
Liu C , Zheng S , Wang Z , et al. KRAS-G12D mutation drives immune suppression and the primary resistance of anti-PD-1/PD-L1 immunotherapy in non-small cell lung cancer[J]. Cancer Commun (Lond), 2022, 42 (9): 828- 847.
doi: 10.1002/cac2.12327 |
16 |
Li Y , Han S , Wu B , et al. CXCL11 correlates with immune infiltration and impacts patient immunotherapy efficacy: A pan-cancer analysis[J]. Front Immunol, 2022, 13, 951247.
doi: 10.3389/fimmu.2022.951247 |
17 |
Chen Q , Jin J , Huang X , et al. Emp3 mediates glioblastoma-associated macrophage infiltration to drive T cell exclusion[J]. J Exp Clin Cancer Res, 2021, 40 (1): 160.
doi: 10.1186/s13046-021-01954-2 |
18 |
Zhu L , Yang Y , Li H , et al. Exosomal micrornas induce tumor-associated macrophages via ppargamma during tumor progression in SHH medulloblastoma[J]. Cancer Lett, 2022, 535, 215630.
doi: 10.1016/j.canlet.2022.215630 |
19 |
Margol AS , Robison NJ , Gnanachandran J , et al. Tumor-associa-ted macrophages in SHH subgroup of medulloblastomas[J]. Clin Cancer Res, 2015, 21 (6): 1457- 1465.
doi: 10.1158/1078-0432.CCR-14-1144 |
20 |
Gao Q , Wang S , Chen X , et al. Cancer-cell-secreted CXCL11 promoted CD8(+) T cells infiltration through docetaxel-induced-release of HMGB1 in NSCLC[J]. J Immunother Cancer, 2019, 7 (1): 42.
doi: 10.1186/s40425-019-0511-6 |
21 |
Chen Z , Liu S , He C , et al. CXCL12-CXCR4-mediated chemotaxis supports accumulation of mucosal-associated invariant T cells into the liver of patients with PBC[J]. Front Immunol, 2021, 12, 578548.
doi: 10.3389/fimmu.2021.578548 |
22 |
Murdamoothoo D , Sun Z , Yilmaz A , et al. Tenascin-C immobilizes infiltrating T lymphocytes through CXCL12 promoting breast cancer progression[J]. EMBO Mol Med, 2021, 13 (6): e13270.
doi: 10.15252/emmm.202013270 |
23 |
Di Pilato M , Kfuri-Rubens R , Pruessmann JN , et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment[J]. Cell, 2021, 184 (17): 4512- 4530. e22.
doi: 10.1016/j.cell.2021.07.015 |
24 |
Abdulrahman Z , Santegoets SJ , Sturm G , et al. Tumor-specific T cells support chemokine-driven spatial organization of intratumoral immune microaggregates needed for long survival[J]. J Immunother Cancer, 2022, 10 (2): e004346.
doi: 10.1136/jitc-2021-004346 |
25 |
Safaei S , Mohme M , Niesen J , et al. Dimeimmune: Robust estimation of infiltrating lymphocytes in CNS tumors from DNA methy-lation profiles[J]. Oncoimmunology, 2021, 10 (1): 1932365.
doi: 10.1080/2162402X.2021.1932365 |
26 |
Pham CD , Flores C , Yang C , et al. Differential immune microenvironments and response to immune checkpoint blockade among molecular subtypes of murine medulloblastoma[J]. Clin Cancer Res, 2016, 22 (3): 582- 595.
doi: 10.1158/1078-0432.CCR-15-0713 |
27 |
Liu Z , Meng Q , Bartek J Jr , et al. Tumor-infiltrating lymphocytes (TILs) from patients with glioma[J]. Oncoimmunology, 2017, 6 (2): e1252894.
doi: 10.1080/2162402X.2016.1252894 |
28 |
Kim AR , Choi SJ , Park J , et al. Spatial immune heterogeneity of hypoxia-induced exhausted features in high-grade glioma[J]. Oncoimmunology, 2022, 11 (1): 2026019.
doi: 10.1080/2162402X.2022.2026019 |
29 |
Park J , Kwon M , Kim KH , et al. Immune checkpoint inhibitor-induced reinvigoration of tumor-infiltrating CD8(+) T cells is determined by their differentiation status in glioblastoma[J]. Clin Cancer Res, 2019, 25 (8): 2549- 2559.
doi: 10.1158/1078-0432.CCR-18-2564 |
30 |
Salsman VS , Chow KK , Shaffer DR , et al. Crosstalk between medulloblastoma cells and endothelium triggers a strong chemotactic signal recruiting T lymphocytes to the tumor microenvironment[J]. PLoS One, 2011, 6 (5): e20267.
doi: 10.1371/journal.pone.0020267 |
31 |
Yi J , Shi X , Xuan Z , et al. Histone demethylase UTX/KDM6A enhances tumor immune cell recruitment, promotes differentiation and suppresses medulloblastoma[J]. Cancer Lett, 2021, 499, 188- 200.
doi: 10.1016/j.canlet.2020.11.031 |
32 |
Gomes-Santos IL , Amoozgar Z , Kumar AS , et al. Exercise training improves tumor control by increasing CD8+ T-cell infiltration via CXCR3 signaling and sensitizes breast cancer to immune checkpoint blockade[J]. Cancer Immunol Res, 2021, 9 (7): 765- 778.
doi: 10.1158/2326-6066.CIR-20-0499 |
33 |
Zheng Y , Liu Y , Zhang F , et al. Radiation combined with KRAS-MEK inhibitors enhances anticancer immunity in KRAS-mutated tumor models[J]. Transl Res, 2023, 252, 79- 90.
doi: 10.1016/j.trsl.2022.08.005 |
34 |
Chheda ZS , Sharma RK , Jala VR , et al. Chemoattractant receptors BLT1 and CXCR3 regulate antitumor immunity by facilitating CD8+ T cell migration into tumors[J]. J Immunol, 2016, 197 (5): 2016- 2026.
doi: 10.4049/jimmunol.1502376 |
35 | Wang G , Zhang Z , Zhong K , et al. CXCL11-armed oncolytic adenoviruses enhance CAR-T cell therapeutic efficacy and reprogram tumor microenvironment in glioblastoma[J]. Mol Ther, 2022, 31 (1): 134- 153. |
[1] | 耿良,吕静,范敬. 肺瘤平膏联合环磷酰胺化疗对肺癌的抑瘤作用和酸性微环境的影响[J]. 北京大学学报(医学版), 2020, 52(2): 247-253. |
[2] | 方伟岗,田新霞. 肿瘤微环境中一种新型促侵袭因子的发现——细胞外ATP功能及机制的研究进展[J]. 北京大学学报(医学版), 2017, 49(2): 188-195. |
|