北京大学学报(医学版) ›› 2024, Vol. 56 ›› Issue (6): 963-971. doi: 10.19723/j.issn.1671-167X.2024.06.004
李炳乐1, 朱凌妍2, 王永福2,*(), 白力3,4,*()
Bingle LI1, Lingyan ZHU2, Yongfu WANG2,*(), Li BAI3,4,*()
摘要:
目的: 研究褪黑素(melatonin,MT)干预肺纤维化患者节律基因表达,并分析其缓解肺纤维化疾病进展的机制。方法: 通过高通量基因表达数据库(Gene Expression Omnibus,GEO)筛选肺纤维化患者与健康对照组之间差异表达的生物钟基因,分析节律基因与肺功能及肺纤维化相关基因之间的相关性。构建博来霉素(bleomycin,BLM)诱导小鼠肺纤维化模型,通过测序及免疫组织化学染色观察BLM组以及使用MT干预后(BLM+MT组)肺组织PER2、CRY2表达的差异,通过HE染色及Masson染色观察MT对肺纤维化的影响。用Western blot检测转化生长因子β(transforming growth factor β,TGF-β)诱导肺上皮细胞P-smad2/3的表达,采用实时荧光定量逆转录PCR技术,探究对照组、TGF-β组、TGF-β+MT组生物钟基因的节律表达变化,最后通过MT受体阻滞剂luzindole干预TGF-β+MT组的肺上皮细胞,通过Western blot探究MT减轻TGF-β诱导上皮-间质转化的受体依赖性。结果: (1) 通过对GEO数据集的分析发现,节律基因PER2和CRY2与TGF-β的表达存在负相关性,且与患者肺功能指标存在正相关性。(2)小鼠肺组织转录组测序分析发现BLM组PER2和CRY2的表达较正常组明显减少。同时,病理染色结果显示正常组小鼠肺组织结构完整清晰,肺泡间隔薄;BLM组中肺组织出现大量胶原纤维增生,肺泡结构紊乱;与BLM组相比,BLM+MT组胶原纤维增生及炎性细胞浸润减少;免疫组化染色结果提示BLM组PER2和CRY2的表达量比正常组降低,BLM+MT组比BLM组增加。(3)肺上皮细胞体外TGF-β干预实验结果表明,相较于对照组,TGF-β组P-smad2/3表达量增加,MT干预抑制了TGF-β对P-smad2/3的诱导作用,而MT受体阻滞剂干预又逆转了这一现象,说明MT可以抑制TGF-β通路激活,且该过程存在MT受体依赖性。(4)肺上皮细胞48 h节律实验结果显示,TGF-β+MT组中PER2和CRY2的mRNA节律接近24 h,且有向对照组节律恢复的趋势,而在加入MT受体阻断剂后,其节律的时程和振幅均趋向于TGF-β组。结论: MT通过与其受体结合,可以恢复正常生物钟基因PER2和CRY2的周期性表达,进而抑制TGF-β经典通路的激活,抑制肺纤维化上皮-间质转化病理进程。这一发现为肺纤维化的治疗提供了新的分子靶点和潜在的治疗策略。
中图分类号:
1 |
Koike N , Yoo SH , Huang HC , et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals[J]. Science, 2012, 338 (6105): 349- 354.
doi: 10.1126/science.1226339 |
2 |
Yamazaki S , Numano R , Abe M , et al. Resetting central and peripheral circadian oscillators in transgenic rats[J]. Science, 2000, 288 (5466): 682- 685.
doi: 10.1126/science.288.5466.682 |
3 |
Cox KH , Takahashi JS . Circadian clock genes and the transcriptional architecture of the clock mechanism[J]. J Mol Endocrinol, 2019, 63 (4): R93- R102.
doi: 10.1530/JME-19-0153 |
4 |
Fukuhara C , Tosini G . Peripheral circadian oscillators and their rhythmic regulation[J]. Front Biosci, 2003, 8, d642- d651.
doi: 10.2741/1042 |
5 | Oishi A , Jockers R . Measuring protein-protein interactions of melatonin receptors by bioluminescence resonance energy transfer (BRET)[J]. Methods Mol Biol, 2022, 2550, 207- 218. |
6 |
Cipolla-Neto J , Amaral FGD . Melatonin as a hormone: New phy-siological and clinical insights[J]. Endocr Rev, 2018, 39 (6): 990- 1028.
doi: 10.1210/er.2018-00084 |
7 |
Kandalepas PC , Mitchell JW , Gillette MU . Melatonin signal transduction pathways require E-box-mediated transcription of Per1 and Per2 to reset the SCN Clock at dusk[J]. PLoS One, 2016, 11 (6): e0157824.
doi: 10.1371/journal.pone.0157824 |
8 |
Zhao SQ , Gao Y , Zhang Y , et al. cAMP/PKA/CREB signaling pathway-mediated effects of melatonin receptor genes on clock gene expression in Bactrian camel ovarian granulosa cells[J]. Domest Anim Endocrinol, 2021, 76, 106609.
doi: 10.1016/j.domaniend.2021.106609 |
9 |
Sisto M , Ribatti D , Lisi S . Organ fibrosis and autoimmunity: The role of inflammation in TGFbeta-dependent EMT[J]. Biomolecules, 2021, 11 (2): 310.
doi: 10.3390/biom11020310 |
10 |
Frangogiannis N . Transforming growth factor-beta in tissue fibrosis[J]. J Exp Med, 2020, 217 (3): e20190103.
doi: 10.1084/jem.20190103 |
11 |
Andugulapati SB , Gourishetti K , Tirunavalli SK , et al. Biochanin- A ameliorates pulmonary fibrosis by suppressing the TGF-beta mediated EMT, myofibroblasts differentiation and collagen deposition in in vitro and in vivo systems[J]. Phytomedicine, 2020, 78, 153298.
doi: 10.1016/j.phymed.2020.153298 |
12 |
Cunningham PS , Meijer P , Nazgiewicz A , et al. The circadian clock protein REVERBα inhibits pulmonary fibrosis development[J]. Proc Natl Acad Sci USA, 2020, 117 (2): 1139- 1147.
doi: 10.1073/pnas.1912109117 |
13 |
Chen SJ , Yu F , Feng X , et al. DEC1 is involved in circadian rhythm disruption-exacerbated pulmonary fibrosis[J]. Cell Commun Signal, 2024, 22 (1): 245.
doi: 10.1186/s12964-024-01614-w |
14 |
Dong C , Gongora R , Sosulski ML , et al. Regulation of transforming growth factor-beta1 (TGF-beta1)-induced pro-fibrotic activities by circadian clock gene BMAL1[J]. Respir Res, 2016, 17, 4.
doi: 10.1186/s12931-016-0320-0 |
15 |
Thannickal VJ , Toews GB , White ES , et al. Mechanisms of pulmonary fibrosis[J]. Annu Rev Med, 2004, 55, 395- 417.
doi: 10.1146/annurev.med.55.091902.103810 |
16 |
Inui N , Sakai S , Kitagawa M . Molecular pathogenesis of pulmonary fibrosis, with focus on pathways related to TGF-beta and the Ubiquitin-Proteasome pathway[J]. Int J Mol Sci, 2021, 22 (11): 6107.
doi: 10.3390/ijms22116107 |
17 |
Chanda D , Otoupalova E , Smith SR , et al. Developmental pathways in the pathogenesis of lung fibrosis[J]. Mol Aspects Med, 2019, 65, 56- 69.
doi: 10.1016/j.mam.2018.08.004 |
18 |
Rodriguez-Santana C , Lopez-Rodriguez A , Martinez-Ruiz L , et al. The relationship between Clock genes, sirtuin 1, and mitochondrial activity in head and neck squamous cell cancer: Effects of melatonin treatment[J]. Int J Mol Sci, 2023, 24 (19): 15030.
doi: 10.3390/ijms241915030 |
19 |
Shin NR , Park JW , Lee IC , et al. Melatonin suppresses fibrotic responses induced by cigarette smoke via downregulation of TGF-beta1[J]. Oncotarget, 2017, 8 (56): 95692- 95703.
doi: 10.18632/oncotarget.21680 |
20 |
Li Y , Zhou Y , Zhao C , et al. The circadian clock gene, BMAL1, promotes radiosensitization in nasopharyngeal carcinoma by inhibiting the epithelial-to-mesenchymal transition via the TGF-beta1/Smads/Snail1 axis[J]. Oral Oncol, 2024, 152, 106798.
doi: 10.1016/j.oraloncology.2024.106798 |
21 |
Guo SN , Jiang XQ , Chen N , et al. Melatonin regulates circadian clock proteins expression in allergic airway inflammation[J]. Heliyon, 2024, 10 (6): e27471.
doi: 10.1016/j.heliyon.2024.e27471 |
22 |
Wan L , Shi XY , Ge WR , et al. The Instigation of the associations between melatonin, Circadian genes, and epileptic spasms in infant rats[J]. Front Neurol, 2020, 11, 497225.
doi: 10.3389/fneur.2020.497225 |
23 |
Fernandez-Ortiz M , Sayed RKA , Roman-Montoya Y , et al. Age and chronodisruption in mouse heart: Effect of the NLRP3 Inflammasome and melatonin therapy[J]. Int J Mol Sci, 2022, 23 (12): 6846.
doi: 10.3390/ijms23126846 |
[1] | 何珊,陈炘,程琦,朱灵江,张培玉,童淑婷,薛静,杜燕. 托法替布通过JAK/STAT3通路抑制肺成纤维细胞向肌成纤维细胞转化[J]. 北京大学学报(医学版), 2024, 56(3): 505-511. |
[2] | 雷玲 , 钟小宁, 赵铖, 米存东, 李佳荃, 曾晶晶. Th17细胞及相关细胞因子在系统性硬化病小鼠模型中的表达及意义[J]. 北京大学学报(医学版), 2012, 44(2): 259-264. |
[3] | 李茹, 李霞, 张晓苹, 相晓红, 栗占国. 类风湿关节炎合并肺间质纤维化的临床特点[J]. 北京大学学报(医学版), 2009, 41(6): 674-677. |
[4] | 林箐, 倪莲芳, 任雅丽, 刘新民. PPARγ和NF-κB在肺纤维化中的表达与意义[J]. 北京大学学报(医学版), 2009, 41(5): 545-547. |
[5] | 倪莲芳, 张志刚, 卜定方, 刘新民. Ⅱ类主要组织相容性抗原在博来霉素致大鼠纤维化肺组织中的表达[J]. 北京大学学报(医学版), 2008, 40(5): 514-518. |
[6] | 赵志杰, 刘新民, 周国鹏, 卜定方, 李雪迎, 宗丽丽, 李江. 老龄大鼠肺内基质金属蛋白酶2、9及基质金属蛋白酶组织抑制因子1、2、3表达变化[J]. 北京大学学报(医学版), 2008, 40(1): 101-104. |
[7] | 李虹, 刘新民, 耿彬, 潘春水, 齐永芬, 吴胜英, 唐朝枢. 新型气体信号分子硫化氢在大鼠肺纤维化发病中的作用[J]. 北京大学学报(医学版), 2006, 38(2): 140-145. |
[8] | 张彦萍, 马俊义. 肺纤维化支气管肺泡灌洗液凝血及纤溶指标的变化[J]. 北京大学学报(医学版), 2005, 37(5): 516-519. |
[9] | 聂立功, 李海潮, 阙呈立, 王广发, 马靖, 李楠, 高志东, 徐小元. SARS第二峰的临床表现和处理[J]. 北京大学学报(医学版), 2003, 35(5): 553-555. |
[10] | 章巍, 刘新民, 李海潮, 张红. 博来霉素致大鼠肺纤维化模型肺组织MMP-2、MMP-9、MT1-MMP及TIMP-1、TIMP-2的表达[J]. 北京大学学报(医学版), 2002, 34(6): 716-721. |
[11] | 马靖, 何冰, 李楠, 张红. 白细胞介素-18在肺纤维化大鼠肺组织中的表达[J]. 北京大学学报(医学版), 2002, 34(4): 376-379. |
|