北京大学学报(医学版) ›› 2016, Vol. 48 ›› Issue (3): 483-490. doi: 10.3969/j.issn.1671-167X.2016.03.019

• 论著 • 上一篇    下一篇

北京市某近郊区居民身体活动情况及其影响因素

吴士艳1,张旭熙1,杨帅帅1,孙凯歌1,贾卫兰2,邵春欣2,吴芹2,宣小伟2,刘永昌2,刘思佳2△,孙昕霙1△   

  1. (1. 北京大学公共卫生学院社会医学与健康教育学系,北京100191;2.北京市通州区疾病预防控制中心,北京101100)
  • 出版日期:2016-06-18 发布日期:2016-06-18
  • 通讯作者: 刘思佳,孙昕霙 E-mail:tzhcmb@yeah.net, xysun@bjmu.edu.cn
  • 基金资助:

     北京市通州区社区诊断项目资助

Physical activity level and its influence factors among residents in one suburb district of Beijing

WU Shi-yan1, ZHANG Xu-xi1, YANG Shuai-shuai1, SUN Kai-ge1, JIA Wei-lan2, SHAO Chun-xin2, WU Qin2, XUAN Xiao-wei2, LIU Yong-chang2, LIU Si-jia2△, SUN Xin-ying1△   

  1. (1. Department of Social Medicine and Health Education, Peking University School of Public Health, Beijing 100191, China; 2.Tongzhou Center for Disease Prevention and Control, Beijing 101100, China)
  • Online:2016-06-18 Published:2016-06-18
  • Contact: LIU Si-jia, SUN Xin-ying E-mail:tzhcmb@yeah.net, xysun@bjmu.edu.cn
  • Supported by:

    Supported by the Community Diagnosis Program of Tongzhou, Beijing

摘要:

目的:分析北京市通州区居民的身体活动情况及其影响因素,为今后有针对性地实施身体活动干预和相关政策的制定提供参考。方法: 以北京市通州区18岁及以上居民为调查对象,共纳入研究7 319人。采用自行设计的调查问卷,该问卷基于健康信念模式设计,信效度良好。以6和10千步当量为是否达到身体活动量的判断标准,采用多因素Logistic回归分析方法探究居民身体活动的影响因素。结果: 北京市通州区居民日均身体活动总量的中位数为9.1千步当量,四分位数间距为(3.8, 20.4),平均每日身体活动总量达到6和10千步当量的比例分别为63.7%和47.7%;工作或家务类、交通类以及休闲类身体活动量的中位数分别为4.0、1.0和 0.0千步当量;占身体活动总量的比例分别为61.7%、18.3%和20.1%;8.6%(626/7 318)的居民不进行任何形式的中等强度或高强度的身体活动;基于健康信念模式共产生5个因子,累积贡献率为63.7%;身体活动量在文化程度、年龄、性别、自我效能、提示因素、主观和客观障碍间差异具有统计学意义(P<0.05)。女性、高年龄组、低文化程度的人群身体活动量多;自我效能感越高,提示因素,主观和客观障碍越少,身体活动量越多。结论: 居民整体的身体活动水平尚可,主要以工作或家务类活动为主。男性、18~29岁和大学/大专及以上学历的人群是重点干预人群,今后需根据不同人群的具体情况制定相应的干预策略,重点是提高居民的自我效能感,降低身体活动主观和客观障碍,并倡导居民积极参加休闲锻炼,以提高居民整体的健康水平。

关键词: 身体活动, 健康信念模式, 影响因素

Abstract:

Objective:To study the physical activity level and its influence factors among residents in one suburb of Beijing, so as to provide specific interventions for different people in different circumstances and to provide reference for health relevant policy-making in the future. Methods: In the study, 7 319 subjects aged 18 years or above were involved. The self-designed questionnaires based on Health Belief Model (HBM) had acceptable validity and reliability. The physical activity levels were calculated to classify sufficient or insufficient amount by a thousand-step equivalent greater than or equal to 6 or 10. Multiple variable Logistic regression was used to explore the influence factors of the physical activity among the residents. Results: The residents’ median amount of physical activity in the suburb district of Beijing were 9.1 thousand-step equivalent with quartile of (3.8, 20.4). The percentages of the thousand-step equivalent greater than or equal to 6 or 10 were 63.7% and 47.7%, respectively. The median amounts of physical activity from work or household chores, transportation and recreation physical activities were 4.0, 1.0, 0.0 and the components of the total amount of physical activity from those were 61.7%, 18.3% and 20.1%, respectively. There were 8.6% residents whose life did notinvolve moderate or vigorous intensity activities. By using factor analysis, five factors were extracted from the scale based on the HBM; These factors together contributed to 63.7% of the sum of the squared loadings. The differences of physical activity levels on education level, age, gender, self-efficacy, cues, subjective and objective barriers were statistically significant (P<0.05).Those who were female, with older age, lower education level, higher selfefficacy, fewer cues, fewer subjective and objective barriers preferred to do more physical activities. Conclusion: The physical activity levels among the residents in the suburb district of Beijing are moderate and high, and most amount of physical activities from work or household chores. Those who are male and whose ages are from 18 to 29 years and whose education levels are of university or above should be focused on intervention. Specific interventions should be developed for different people in different situations; More attention should be paid to improve the residents’ self-efficacy and reduce the subjective and objective barriers of physical activity, and we also should actively advocate people to have more leisure exercise so as to improve the physical activity level among all residents.

Key words: Physical activity, Health belief model, Influence factors

中图分类号: 

  • R193
[1] 王敏, 李倩. 青少年抑郁症患者心理弹性影响因素的路径分析[J]. 北京大学学报(医学版), 2024, 56(5): 809-814.
[2] 曾媛媛,谢云,陈道南,王瑞兰. 脓毒症患者发生正常甲状腺性病态综合征的相关因素[J]. 北京大学学报(医学版), 2024, 56(3): 526-532.
[3] 蔡珊,张依航,陈子玥,刘云飞,党佳佳,师嫡,李佳欣,黄天彧,马军,宋逸. 北京市中小学生身体活动时间现状及影响因素的路径[J]. 北京大学学报(医学版), 2024, 56(3): 403-410.
[4] 沈鹤军,侍崇艳,郑清,黄玉,景涛. 我国高中生静坐时长与健康素养现状及其影响因素调查[J]. 北京大学学报(医学版), 2024, 56(2): 239-246.
[5] 刘笑晗,杨帆,王昕迪,黄宁,程陶朱,郭静. 中国流动人口自评健康状况影响因素及公平性[J]. 北京大学学报(医学版), 2024, 56(2): 223-229.
[6] 安思兰,郑群怡,王锴,高姗. 全膝关节置换术后患者早期疼痛的特点及其影响因素[J]. 北京大学学报(医学版), 2024, 56(1): 167-173.
[7] 那晓娜,朱珠,陈阳阳,王东平,王浩杰,宋阳,马晓川,王培玉,刘爱萍. 身体活动、静坐行为的时间分布与肥胖的关系[J]. 北京大学学报(医学版), 2020, 52(3): 486-491.
[8] 吴士艳,张旭熙,孙凯歌,胡康,刘思佳,孙昕霙. 慢性病高危人群和健康人群休闲类身体活动健康信念模式的多组结构方程模型分析[J]. 北京大学学报(医学版), 2018, 50(4): 711-716.
[9] 张艺潇,冯文. 决策树在贫困农村老人就诊影响因素中的应用[J]. 北京大学学报(医学版), 2018, 50(3): 450-456.
[10] 景日泽,章湖洋,徐婷婷,张鲁豫,方海. 北京市三级公立医院效率及其影响因素[J]. 北京大学学报(医学版), 2018, 50(3): 408-415.
[11] 赵雨薇,吴明. 北京市不同居住时间的农村流动人口门诊服务利用状况及其影响因素[J]. 北京大学学报(医学版), 2017, 49(3): 476-482.
[12] 陈娟, 廖逸星, 李卓婷, 田野, 杨帅帅, 吐达洪, 何朝, 孙昕霙. 应用健康信念模式分析北京城乡居民限盐行为的影响因素[J]. 北京大学学报(医学版), 2014, 46(2): 242-246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!