北京大学学报(医学版) ›› 2017, Vol. 49 ›› Issue (3): 439-445. doi: 10.3969/j.issn.1671-167X.2017.03.011

• 论著 • 上一篇    下一篇

China-PAR模型在北方农村人群中预测动脉粥样硬化性心血管疾病发病风险的应用

唐迅1,张杜丹1,何柳1,曹洋1,王晋伟1,李娜2,黄少平2,窦会东3,高培1△,胡永华1△   

  1. (1. 北京大学公共卫生学院流行病与卫生统计学系, 北京100191; 2. 北京市房山区卫生局, 北京102488; 3. 北京市房山区第一医院, 北京102400)
  • 出版日期:2017-06-18 发布日期:2017-06-18
  • 通讯作者: 高培,胡永华 E-mail:peigao@bjmu.edu.cn, yhhu@bjmu.edu.cn
  • 基金资助:
    国家自然科学基金(81573226、91546120、81230066)和北京市自然科学基金(7162107)资助

Application of the China-PAR risk prediction model for atherosclerotic cardiovascular disease in a rural northern Chinese population

TANG Xun1, ZHANG Du-dan1, HE Liu1, CAO Yang1, WANG Jin-wei1, LI Na2, HUANG Shao-ping2, DOU Hui-dong3, GAO Pei1△, HU Yong-hua1△   

  1. (1. Department of Epidemiology & Biostatistics, Peking University School of Public Health, Beijing 100191, China; 2. Fangshan District Bureau of Health, Beijing 102488, China; 3. The First Hospital of Fangshan District, Beijing 102400, China)
  • Online:2017-06-18 Published:2017-06-18
  • Contact: GAO Pei, HU Yong-hua E-mail:peigao@bjmu.edu.cn, yhhu@bjmu.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China (81573226, 91546120, 81230066) and Beijing Natural Science Foundation (7162107)

摘要:  目的:在中国北方农村人群的前瞻性队列中,独立验证并比较动脉粥样硬化性心血管疾病(atherosclerotic cardiovascular disease,ASCVD)5年发病风险预测模型的准确性,对模型的实际应用进行评价并提供证据。方法:研究对象为2010年6至8月参加基线调查并随访至2017年1月的6 489名基线调查时未患ASCVD的40~79岁北京房山农村人群,分别采用美国心脏病学会/美国心脏协会指南最新发布的汇总队列公式(pooled cohort equations,PCE)和中国动脉粥样硬化性心血管疾病风险预测研究(prediction for ASCVD risk in China,China-PAR)的模型计算预测的5年发病风险。通过KaplanMeier方法调整获得5年实际观察到的新发ASCVD事件(包括急性心肌梗死、冠心病死亡以及致死和非致死性脑卒中)的发病率,并计算预测风险/实际发病率的比值以评价验证队列中是否存在风险高估或低估。研究人群按照ASCVD预测风险分为4个类别(<5.0%、 5.0%~7.4%、 7.5%~9.9%以及≥10.0%)进行比较。采用区分度C统计量、校准度卡方值以及校准图评估模型的预测准确性。结果:在本验证队列6 489名研究对象平均5.82年的随访时间内,共出现新发ASCVD事件955例。China-PAR模型高估了ASCVD的5年发病风险,再校准后对男性和女性的发病风险分别高估了22.2%和33.1%;而PCE模型的高估程度更严重,再校准后男性和女性分别高估了67.3%和53.1%。China-PAR和PCE模型的区分度接近,C统计量及其95%可信区间在男性中分别为0.696(0.669~0.723)和0.702(0.675~0.730),在女性中分别为0.709(0.690~0.728)和0.714(0.695~0.733)。China-PAR模型的校准度卡方值在男性和女性中分别为17.2和54.2,但PCE模型的校准度较差(男性和女性分别为192.0和181.2)。另外,只有China-PAR模型的校准图显示其预测风险与实际发病率的一致性较好,特别是在男性人群。结论:作为国内开展ASCVD风险评估和一级预防的工具,China-PAR模型对于中国北方农村人群ASCVD 5年发病风险的预测优于PCE模型,特别是在男性中更加准确。

关键词:  心血管疾病, 风险预测, 队列研究, 农村人群

Abstract: Objective:To validate five-year risk prediction models for atherosclerotic cardiovascular di-sease (ASCVD) in a contemporary rural Northern Chinese population. Methods: Totally 6 489 rural adults aged 40 to 79 years without clinical ASCVD were enrolled at baseline between June and August 2010, and followed up through January 2017. Expected prediction risk using the China-PAR (prediction for ASCVD risk in China) model was compared with the pooled cohort equations (PCE) reported in the American College of Cardiology / American Heart Association guideline. Kaplan-Meier analysis was used to obtain the observed ASCVD event (including nonfatal myocardial infarction, coronary heart disease death, nonfatal or fatal stroke) rate at 5 years, and the expectedobserved ratios were calculated to eva-luate overestimation or underestimation in the cohort. The participants in the cohort were divided into 4 categories (<5.0%, 5.0%-7.4%, 7.5%-9.9%, and ≥10.0%) for comparisons based on ASCVD prediction risk. The models were assessed by discrimination C statistic, calibration χ2, and calibration charts and plots for illustration as well. Results: Over an average 5.82 years of follow-up in this validation cohort with 6 489 rural Chinese participants, 955 subjects developed a first ASCVD event. Recalibrated China-PAR model overestimated ASCVD events by 22.2% in men and 33.1% in women, while the overestimations were much higher for recalibrated PCE as 67.3% in men and 53.1% in women. Gender-specific China-PAR model had C statistics of 0.696 (95%CI, 0.669-0.723) for men and 0.709 (95%CI, 0.690-0.728) for women, which were similar to those of 0.702 (95%CI, 0.675-0.730) for men and 0.714 (95%CI, 0.695-0.733) for women in the PCE. Calibration χ2 values in China-PAR were 17.2 and 54.2 for men and women, respectively; however, the PCE showed poorer ca-libration (χ2=192.0 for men and χ2=181.2 for women). In addition, the calibration charts and plots illustrated good agreement between the observations and the predictions only in the China-PAR model, especially for men. Conclusion: In this validation cohort of rural Northern Chinese adults, the China-PAR model had better performance of five-year ASCVD risk prediction than the PCE, indicating that recalibrated China-PAR model might be an appropriate tool for risk assessment and primary prevention of ASCVD in China.

Key words: Cardiovascular diseases, Risk prediction, Cohort study, Rural population

中图分类号: 

  • R181.3
[1] 刘晓强,周寅. 牙种植同期植骨术围术期高血压的相关危险因素[J]. 北京大学学报(医学版), 2024, 56(1): 93-98.
[2] 张云静,乔丽颖,祁萌,严颖,亢伟伟,刘国臻,王明远,席云峰,王胜锋. 乳腺癌患者新发心血管疾病预测模型的建立与验证:基于内蒙古区域医疗数据[J]. 北京大学学报(医学版), 2023, 55(3): 471-479.
[3] 于欢,杨若彤,王斯悦,吴俊慧,王梦莹,秦雪英,吴涛,陈大方,武轶群,胡永华. 2型糖尿病患者使用二甲双胍与缺血性脑卒中发病风险的队列研究[J]. 北京大学学报(医学版), 2023, 55(3): 456-464.
[4] 马涛,李艳辉,陈曼曼,马莹,高迪,陈力,马奇,张奕,刘婕妤,王鑫鑫,董彦会,马军. 青春期启动提前与儿童肥胖类型的关联研究: 基于横断面调查和队列调查[J]. 北京大学学报(医学版), 2022, 54(5): 961-970.
[5] 柯杨,王敏敏,刘萌飞,刘芳芳,刘英,何忠虎. 肿瘤早期预警生物标志物的研究与思考[J]. 北京大学学报(医学版), 2022, 54(5): 810-813.
[6] 刘晓强,杨洋,周建锋,刘建彰,谭建国. 640例单牙种植术对血压和心率影响的队列研究[J]. 北京大学学报(医学版), 2021, 53(2): 390-395.
[7] 刘欢,何映东,刘金波,黄薇,赵娜,赵红薇,周晓华,王宏宇. 血管健康指标对新发心脑血管事件的预测价值:北京血管健康分级标准的初步验证[J]. 北京大学学报(医学版), 2020, 52(3): 514-520.
[8] 孟文颖,黄琬桐,张杰,焦明远,金蕾,靳蕾. 孕早期血清维生素E水平与妊娠期高血压疾病发病风险的关系[J]. 北京大学学报(医学版), 2020, 52(3): 470-478.
[9] 唐迅,张杜丹,刘晓非,刘秋萍,曹洋,李娜,黄少平,窦会东,高培,胡永华. China-PAR脑卒中模型在北方农村人群中预测脑卒中发病风险的应用[J]. 北京大学学报(医学版), 2020, 52(3): 444-450.
[10] 唐雯,高峻逸,马辛宇,张超贺,马连韬,王亚沙. 循环神经网络模型在腹膜透析临床预后预测中的初步应用[J]. 北京大学学报(医学版), 2019, 51(3): 602-608.
[11] 林鸿波,陈奕,沈鹏,李小勇,司亚琴,张杜丹,唐迅,高培. 社区糖尿病患者慢性肾脏病的发病率及其危险因素[J]. 北京大学学报(医学版), 2018, 50(3): 416-421.
[12] 蔺轲,谢俊卿,胡永华,孔桂兰. 支持向量机在ICU急性肾损伤患者住院死亡风险预测中的应用[J]. 北京大学学报(医学版), 2018, 50(2): 239-244.
[13] 杨志凯, 董捷, 左力. 腹膜透析总水清除量下降速率快是患者死亡的独立危险因素[J]. 北京大学学报(医学版), 2011, 43(6): 844-848.
[14] 何耀. 队列研究设计在临床研究中的应用和相关方法学问题[J]. 北京大学学报(医学版), 2010, 42(6): 713-715.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!