北京大学学报(医学版) ›› 2018, Vol. 50 ›› Issue (2): 221-225. doi: 10.3969/j.issn.1671-167X.2018.02.004

• 论著 • 上一篇    下一篇

光磁双模态分子探针Gd-DO3A-EA-FITC在脑组织间隙成像分析中的应用

李昀倩1,2,3,盛荟1,2,3,梁磊1,赵越2,3,李怀业2,3,白宁2,3,4,王彤1,2,3,袁兰1,2△,韩鸿宾3,5△   

  1. (1. 北京大学药学院化学生物学系, 北京100191; 2. 北京大学医药卫生分析中心, 北京100191; 3. 北京市磁共振成像设备与技术重点实验室, 北京100191; 4. 锦州医科大学药学院, 辽宁锦州121000; 5. 北京大学第三医院放射科, 北京100191)
  • 出版日期:2018-04-18 发布日期:2018-04-18
  • 通讯作者: 袁兰,韩鸿宾 E-mail:yuan_lan@bjmu.edu.cn, hanhongbin@bjmu.edu.cn
  • 基金资助:
     国家重点研发计划(2016YFC0103605、2016YFC0103602、2016YFC0103600)、国家自然科学基金(91330103、91630314、81471633)、国家杰出青年基金(61625102)、北京市科技计划(Z161100000116041)、北京大学医学工学交叉学科种子基金项目(BMU20120290)资助

Application of anoptomagnetic probe Gd-DO3A-EA-FITC in imaging and analyzing the brain interstitial space

LI Yun-qian1,2,3, SHENG Hui1,2,3, LIANG Lei1, ZHAO Yue2,3, LI Huai-ye2,3, BAI Ning2,3,4, WAN Tong1,2,3, YUAN Lan1,2△, HAN Hong-bin3,5△   

  1. (1. Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijng 100191, China; 2. Peking University Medical and Health Analysis Center, Beijng 100191, China; 3. Beijing Key Lab of Magnetic Resonance Imaging Device and Technique, Beijing 100191, China; 4. Jinzhou Medical University of Pharmaceutical Sciences, Jinzhou 121000, Liaoning, China; 5. Department of Radiology, Peking University Third Hospital, Beijing 100191, China)
  • Online:2018-04-18 Published:2018-04-18
  • Contact: YUAN Lan, HAN Hong-bin E-mail:yuan_lan@bjmu.edu.cn, hanhongbin@bjmu.edu.cn
  • Supported by:
     Supported by the National Key Research and Development Plan (2016YFC0103605, 2016YFC0103602, 2016YFC0103600), the National Natural Science Foundation of China (91330103, 91630314, 81471633), the National Science Fund for Distinguished Young Scholars (61625102), the Beijing Municipal Science and Technology (Z161100000116041), and the Peking University Seed Fund for Medicine-Engineering Interdisciplinary Research Project (BMU20120290)

摘要: 目的:研究光磁双模态分子探针Gd-DO3A-ethylthiourea-fluorescein isothiocyanate(Gd-DO3A-EA-FITC)在脑组织间隙(interstitial space, ISS)成像分析中的应用价值。方法:24只SD雄性大鼠随机分为磁示踪组(6只)、荧光示踪组(6只)和光磁示踪组(12只),光磁示踪组随机分为磁示踪亚组(6只)和荧光示踪亚组(6只)。分别在大鼠尾状核区注入磁示踪剂钆-二乙三胺五乙酸(gadoliniumdiethylene triamine pentaacetic acid, Gd-DTPA)、光示踪剂异硫氰酸荧光素(fluorescein isothiocyanate, FITC)和光磁双模态分子探针Gd-DO3A-EA-FITC,应用磁共振成像(magnetic resonance imaging, MRI)检测示踪剂在脑ISS中的扩散和分布,利用自主研发的脑ISS图像处理系统测量Gd-DO3A-EA-FITC和Gd-DTPA在脑ISS内的扩散系数、清除率、体积分数和半衰期等扩散参数。注射示踪剂2 h后,利用激光扫描共聚焦显微镜(laser scanning confocal microscope, LSCM)对离体脑切片进行荧光信号的采集,并对比分析斜矢状位切片中示踪剂扩散分布的最大面积。结果:Gd-DTPA和Gd-DO3A-EA-FITC在鼠脑内的平均扩散系数分别为(3.31±0.11)×10-4 mm2/s和(3.37±0.15)×10-4 mm2/s (t=0.942,P=0.360),清除率分别为(3.04±0.37) mmol/L和(2.90±0.51) mmol/L (t=0.640,P=0.531),体积分数分别为17.18%±0.14%和17.31%±0.15% (t=1.961,P=0.068),半衰期分别为(86.58±3.31) min和(84.61±2.38) min (t=1.412,P=0.177),扩散分布最大面积分别为(22.71±1.00) mm2和(23.25±0.68) mm2 (t=1.100,P=0.297),两者的各项扩散参数差异均无统计学意义。FITC和Gd-DO3A-EA-FITC在鼠脑内扩散分布最大面积分别为(22.10±1.29) mm2和(22.61±1.16) mm2 (t=0.713,P=0.492),两者差异无统计学意义,Gd-DO3A-EA-FITC的扩散面积略大于FITC。结论:Gd-DO3A-EA-FITC与传统的Gd-DTPA的成像结果相同,可用于ISS的测量。

关键词:  , 脑, 造影剂, 分子探针技术, 组织间隙, 显微镜检查, 共焦, 磁共振成像

Abstract: Objective: To investigate the application of the optical magnetic bimodal molecular probe Gd-DO3A-ethylthiouret-fluorescein isothiocyanate (Gd-DO3A-EAFITC) in brain tissue imaging and brain interstitial space (ISS). Methods: In the study, 24 male SD rats were randomly divided into 3 groups, including magnetic probe group (n=6), optical probe group (n=6) and optical magnetic bimodal probe group (n=12), then the optical magnetic bimodal probe group was divided equally into magnetic probe subgroup (n=6) and optical probe subgroup (n=6). Referencing the brain stereotaxic atlas, the coronal globus pallidus as center level, the probes including gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA), fluorescein isothiocyanate (FITC) and Gd-DO3A-EA-FITC of 2 μL (10 mmol/L) were injected into the caudate nucleus respectively, magnetic resonance imaging (MRI) was performed in the magnetic probe group and magnetic probe subgroup to image the dynamic diffusion and distribution of the probes in the brain ISS, a self-developed brain ISS image processing system was used to measure the diffusion coefficient, clearance, volume fraction and half-time in these two groups. Laser scanning confocal microscope (LSCM) was performed in vitro in the optical probe group and optical probe subgroup for fluorescence imaging at the time points 2 hours after the injection of the probe, and the distribution in the oblique sagittal slice was compared with the result of the first two groups. Results: For the magnetic probe group and magnetic probe subgroup, there were the same imaging results between the probes of Gd-DTPA and Gd-DO3A-EA-FITC. The diffusion parameters of Gd-DTPA and GdDO3A-EA-FITC were as follows: the average diffusion coefficients [(3.31±0.11)×10-4 mm2/s vs. (3.37±0.15)×10-4 mm2/s, t=0.942, P=0.360], the clearance [(3.04±0.37) mmol/L vs. (2.90±0.51) mmol/L, t=0.640, P=0.531], the volume fractions (17.18%±0.14% vs. 17.31%±0.15%, t=1.961, P=0.068), the half-time [(86.58±3.31) min vs. (84.61±2.38) min, t=1.412, P=0.177], the diffusion areas [(23.25±0.68) mm2 vs. (22.71±1.00) mm2, t=1.100, P=0.297]. The statistical analysis of each brain was made by t test, and the diffusion parameters were not statistically significant. Moreover, for the optical probe group and optical probe subgroup, the diffusion area of Gd-DO3A-EA-FITC [(22.61±1.16) mm2] was slightly larger than that of FITC [(22.10±1.29) mm2], the statistical analysis of each brain was made by t test, and the diffusion parameters were not statistically significant (t=0.713, P=0.492). Conclusion: Gd-DO3AEA-FITC shows the same imaging results as the traditional GD-DTPA, and it can be used in measuring brain ISS.

Key words: Brain, Contrast media, Molecular probe techniques, Interstitial space, Microscopy, confocal, Magnetic resonance imaging

中图分类号: 

  • R445.2
[1] 邢念增,王明帅,杨飞亚,尹路,韩苏军. 前列腺免活检创新理念的临床实践及其应用前景[J]. 北京大学学报(医学版), 2024, 56(4): 565-566.
[2] 田宇轩,阮明健,刘毅,李德润,吴静云,沈棋,范宇,金杰. 双参数MRI改良PI-RADS评分4分和5分病灶的最大径对临床有意义前列腺癌的预测效果[J]. 北京大学学报(医学版), 2024, 56(4): 567-574.
[3] 李晋娜,许丽娜,李敏,宋怡,张静,贾龙斌. 急性脑梗死患者血清BDNF、IL-18、hs-CRP水平与血管性认知障碍的相关性[J]. 北京大学学报(医学版), 2024, 56(4): 708-714.
[4] 龙仁,毛鑫,高天姿,解倩,谈瀚博,李子寅,韩鸿宾,袁兰. 熊果酸改善精神分裂症小鼠脱髓鞘和脑组织间液引流紊乱[J]. 北京大学学报(医学版), 2024, 56(3): 487-494.
[5] 刘毅,袁昌巍,吴静云,沈棋,肖江喜,赵峥,王霄英,李学松,何志嵩,周利群. 靶向穿刺+6针系统穿刺对PI-RADS 5分患者的前列腺癌诊断效能[J]. 北京大学学报(医学版), 2023, 55(5): 812-817.
[6] 袁昌巍,李德润,李志华,刘毅,山刚志,李学松,周利群. 多参数磁共振成像中动态对比增强状态在诊断PI-RADS 4分前列腺癌中的应用[J]. 北京大学学报(医学版), 2023, 55(5): 838-842.
[7] 刘颖,霍然,徐慧敏,王筝,王涛,袁慧书. 磁共振血管壁成像评估颈动脉中重度狭窄患者斑块特征与脑血流灌注的相关性[J]. 北京大学学报(医学版), 2023, 55(4): 646-651.
[8] 傅强,高冠英,徐雁,林卓华,孙由静,崔立刚. 无症状髋关节前上盂唇撕裂超声与磁共振检查的对比研究[J]. 北京大学学报(医学版), 2023, 55(4): 665-669.
[9] 范常锋,黄亚平,李霞,陈芸,李真,乔淑冬. 以发作性体位性视物双影为前期症状的后循环卒中1例[J]. 北京大学学报(医学版), 2023, 55(4): 762-765.
[10] 于欢,杨若彤,王斯悦,吴俊慧,王梦莹,秦雪英,吴涛,陈大方,武轶群,胡永华. 2型糖尿病患者使用二甲双胍与缺血性脑卒中发病风险的队列研究[J]. 北京大学学报(医学版), 2023, 55(3): 456-464.
[11] 叶珊,金萍萍,张楠,邬海博,石林,赵强,杨坤,袁慧书,樊东升. 肌萎缩侧索硬化患者认知功能改变与脑皮层厚度分析[J]. 北京大学学报(医学版), 2022, 54(6): 1158-1162.
[12] 蔡颖,万巧琴,蔡宪杰,高亚娟,韩鸿宾. 光生物调节加速脑组织间液引流及其机制[J]. 北京大学学报(医学版), 2022, 54(5): 1000-1005.
[13] 陈素华,杨军,陈新,杨辰龙,孙建军,林国中,于涛,杨欣,韩芸峰,吴超,司雨,马凯明. 大型、巨大型上矢状窦中后1/3侵犯颅外复发脑膜瘤的手术治疗[J]. 北京大学学报(医学版), 2022, 54(5): 1006-1012.
[14] 陆林,刘晓星,袁凯. 中国脑科学计划进展[J]. 北京大学学报(医学版), 2022, 54(5): 791-795.
[15] 杜燕燕,王健,贺兰,季丽娜,徐樨巍. 儿童川崎病合并轻微脑炎/脑病伴可逆性胼胝体压部病变综合征1例并文献复习[J]. 北京大学学报(医学版), 2022, 54(4): 756-761.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!