北京大学学报(医学版) ›› 2019, Vol. 51 ›› Issue (5): 973-976. doi: 10.19723/j.issn.1671-167X.2019.05.031

• 技术方法 • 上一篇    下一篇

机器人辅助三叉神经半月节的穿刺精度研究

朱建华,王晶,刘筱菁,郭传瑸()   

  1. 北京大学口腔医学院·口腔医院,口腔颌面外科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081
  • 收稿日期:2017-08-28 出版日期:2019-10-18 发布日期:2019-10-23
  • 通讯作者: 郭传瑸 E-mail:guodazuo@sina.com
  • 基金资助:
    国家高技术研究发展计划(863计划)(,2012AA041606和北京市科技计划Z141100002014003);北京市科技计划(Z141100002014003)

Accuracy analysis of robotic assistant needle placement for trigeminal gasserian ganglion

Jian-hua ZHU,Jing WANG,Xiao-jing LIU,Chuan-bin GUO()   

  1. Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2017-08-28 Online:2019-10-18 Published:2019-10-23
  • Contact: Chuan-bin GUO E-mail:guodazuo@sina.com
  • Supported by:
    Supported by the National High Technology Research and Development Program of China (863 Program)(,2012AA041606和北京市科技计划Z141100002014003);the Beijing Science and Technology Project(Z141100002014003)

RICH HTML

  

摘要:

目的:验证自主研发的穿刺机器人辅助三叉神经半月节穿刺的精确性及可行性。方法:使用仿真头颅模型作为研究对象,橡皮泥模拟软组织,术前对模型进行锥形束CT(cone beam CT, CBCT)扫描,将影像数据导入计算机的术前设计系统,分割卵圆孔作为目标点,选取“皮肤进针点”后生成穿刺路径。将模型固定于模拟手术床的实验台,使用点配准的方式完成系统配准,发送穿刺路径数据至机器人控制器,经过医生确认穿刺路径后,在导航引导下机器人系统自动完成穿刺手术操作。穿刺完成后导航仪获取针尖即刻位置坐标,通过配准矩阵转换,计算针尖点与设计靶点的几何距离对穿刺精度进行术中验证,将穿刺针从执行器末端松解,对模型进行CBCT扫描再次获取术后图像数据,将术前、术后头颅进行图像融合,选取术后图像中针尖坐标数据,经过配准矩阵转换,计算针尖点与设计靶点的几何距离进行术后精度验证。采用IBM SPSS Statistics 20统计软件,以配对t检验方法对术中导航验证精度与术后图像融合验证精度进行统计学分析。结果:20例穿刺手术均一次成功穿过卵圆孔,术中导航验证平均穿刺误差为(0.56±0.07) mm,术后图像融合验证平均穿刺误差为(1.49±0.14) mm,差异有统计学意义(P<0.001)。结论:机器人辅助三叉神经半月节穿刺手术高效、可靠,导航精度是影响机器人辅助穿刺手术的重要因素。

关键词: 机器人, 手术, 计算机辅助, 三叉神经痛

Abstract:

Objective: To evaluate the accuracy and feasibility of a custom robot system guided by optical navigation for needle puncture on trigeminal gasserian ganglion. Methods: A synthetic human skull model was used, with plasticine placed around the skull base to imitate the human soft tissue. Cone beam CT (CBCT) scanning was performed before the operation. With image data transferred to the graphical user interface of the computer workstation, the oval foramen was selected as the target and the “skin entry point” was also determined by the surgeon on the surgical planning software. Thus the needle trajectory was eventually planned. The skull model was fixed firmly to the trial table with a head clamp and relative size of the trial table was the same as a standard operating table. Following point-based registration, the data were sent to the robot control unit. Only after the surgeon’s confirmation, the needle was automatically inserted into the intended target by the robot guided by optical navigation. When the procedure was completed, the instantaneous data of the needle tip orientation acquired by navigation system was sent back to the computer workstation for accuracy verification by calculating the geometric distance between the needle tip and the planning target after matrix transformation. Subsequently, after the needle had been released, CBCT scanning was also acquired to make image fusion of the preoperative skull and the postoperative skull. The data of the needle tip orientation was acquired on the postoperative image and the accuracy was re-verified by calculating the geometric distance between the needle tip and the planning target after matrix transformation. IBM SPSS Statistics 20 was used for statistical analysis and the paired t-test was used to compare the differences in the accuracy measured by the intraoperative navigation and postoperative image fusion. Results:All 20 interventions were successfully located in oval foramen at the first needle insertion. The mean deviation of the needle tip was (0.56±0.07) mm (measured by the navigation system) and (1.49±0.14) mm (measured by the image fusion), respectively (P<0.001). Conclusion: The experimental results show the robot system is efficient and reliable. The navigation accuracy is one of the most significant factors in robotic procedures.

Key words: Robotics, Surgery, computer-assisted, Trigeminal neuralgia

中图分类号: 

  • R745.11

图1

机器人系统 (A为光学导航仪,B为计算机工作站,C为机器人装置)"

图2

闭合回路控制"

图3

术前(银色)、术后(棕绿色)头颅图像融合 (紫色线型为设计路径,棕绿色线性物体为穿刺针)"

图4

针尖偏移误差"

[1] van Kleef M, van Genderen WE, Narouze S , et al. 1. Trigeminal neuralgia[J]. Pain Pract, 2009,9(4):252-259.
[2] 邵君飞, 王海秋, 姚建社 , 等. CAS-R-2型机器人导航下射频治疗三叉神经痛的基础与临床研究[J]. 临床神经外科杂志, 2006,3(2):70-72.
[3] Bale RJ, Laimer I, Martin A , et al. Frameless stereotactic cannulation of the foramen ovale for ablative treatment of trigeminal neuralgia[J]. Neurosurgery, 2006,59(2):394-401.
[4] Caversaccio M, Zulliger D, Bächler R , et al. Practical aspects for optimal registration (matching) on the lateral skull base with an optical frameless computer-aided pointer system[J]. Am J Otol, 2000,21(6):863-870.
[5] Bae KH, Lichti DD . A method for automated registration of unorganised point clouds[J]. ISPRS J Photogramm, 2008,63(1):36-54.
[6] 张杰, 孟箭, 庄乾伟 , 等. 三维CT引导下经卵圆孔穿刺射频治疗三叉神经痛[J]. 口腔颌面外科杂志, 2016,26(4):285-289.
[7] 卢光, 陶蔚, 朱宏伟 , 等. 神经导航引导经皮穿刺三叉神经半月节射频热凝治疗三叉神经痛的研究[J]. 临床神经外科杂志, 2013,10(6):341-343.
[8] Masamune K, Fichtinger G, Patriciu A , et al. System for robotically assisted percutaneous procedures with computed tomography guidance[J]. Comput Aided Surg, 2001,6(6):370-383.
[9] Aghayev E, Ebert LC, Christe A , et al. CT data-based navigation for post-mortem biopsy: a feasibility study[J]. J Forensic Leg Med, 2008,15(6):382-387.
[10] Penzkofer T, Isfort P, Bruners P , et al. Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments[J]. Eur Radiol, 2010,20(11):2656-2662.
[11] Dogangil G, Davies BL, Rodriguez YBF . A review of medical robotics for minimally invasive soft tissue surgery[J]. Proc Inst Mech Eng H, 2010,224(5):653-679.
[12] Simone C, Okamura AM. Modeling of needle insertion forces for robot-assisted percutaneous therapy [C]// Proceedings of the 2002 IEEE International Conference on Robotics and Automation, ICRA 2002, Washington, DC, USA. IEEE, 2002: 2085-2091.
[13] Kataoka H, Washio T, Audette M, et al. A model for relations between needle deflection, force, and thickness on needle penetration [C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberg, 2001: 966-974.
[14] Luebbers HT, Messmer P, Obwegeser JA , et al. Comparison of different registration methods for surgical navigation in cranio-maxillofacial surgery[J]. J Craniomaxillofac Surg, 2008,36(2):109-116.
[15] Raabe A, Krishnan R, Wolff R , et al. Laser surface scanning for patient registration in intracranial image-guided surgery[J]. Neurosurgery, 2002,50(4):802-803.
[16] Schlaier J, Warnat J, Brawanski A . Registration accuracy and practicability of laser-directed surface matching[J]. Comput Aided Surg, 2002,7(5):284-290.
[17] Bao N, Chen Y, Yue Y , et al. Fiducial markers configuration optimization in image-guided surgery[J]. Biomed Mater Eng, 2014,24(6):3361-3371.
[1] 张树栋,谢睿扬. 机器人手术时代的肾癌合并腔静脉瘤栓治疗策略[J]. 北京大学学报(医学版), 2024, 56(4): 562-564.
[2] 颜野,李小龙,夏海缀,朱学华,张羽婷,张帆,刘可,刘承,马潞林. 前列腺癌根治术后远期膀胱过度活动症的危险因素[J]. 北京大学学报(医学版), 2024, 56(4): 589-593.
[3] 王明瑞,刘军,熊六林,于路平,胡浩,许克新,徐涛. 经皮微通道-微电子肾镜-微超声探针碎石术治疗1.5~2.5 cm肾结石的疗效和安全性[J]. 北京大学学报(医学版), 2024, 56(4): 605-609.
[4] 应沂岑,杜毅聪,李志华,张一鸣,李新飞,王冰,张鹏,朱宏建,周利群,杨昆霖,李学松. 机器人辅助腹腔镜下颊黏膜补片输尿管成形术治疗复杂输尿管狭窄[J]. 北京大学学报(医学版), 2024, 56(4): 640-645.
[5] 虞乐,邓绍晖,张帆,颜野,叶剑飞,张树栋. 具有低度恶性潜能的多房囊性肾肿瘤的临床病理特征及预后[J]. 北京大学学报(医学版), 2024, 56(4): 661-666.
[6] 乔佳佳,田聪,黄晓波,刘军. 肾结石合并系统性红斑狼疮行经皮肾镜碎石取石术的安全性和有效性评估[J]. 北京大学学报(医学版), 2024, 56(4): 745-749.
[7] 陈克伟,邓绍晖,刘茁,张洪宪,马潞林,张树栋. 肾血管平滑肌脂肪瘤破裂出血的手术时机[J]. 北京大学学报(医学版), 2024, 56(2): 326-331.
[8] 徐心雨,吴灵,宋凤岐,李自力,张益,刘筱菁. 基于下颌运动轨迹的正颌外科术中下颌骨髁突定位方法及初步精度验证[J]. 北京大学学报(医学版), 2024, 56(1): 57-65.
[9] 蔡安东,王晓霞,周文娟,柳忠豪. 下颌前突畸形患者上颌骨及髁突虚拟位置与术后现实位置的比较[J]. 北京大学学报(医学版), 2024, 56(1): 74-80.
[10] 李穗,马雯洁,王时敏,丁茜,孙瑶,张磊. 上前牙种植单冠修复体切导的数字化设计正确度[J]. 北京大学学报(医学版), 2024, 56(1): 81-87.
[11] 毛海,张帆,张展奕,颜野,郝一昌,黄毅,马潞林,褚红玲,张树栋. 基于MRI前列腺腺体相关参数构建腹腔镜前列腺癌术后尿失禁的预测模型[J]. 北京大学学报(医学版), 2023, 55(5): 818-824.
[12] 刘慧丽,吕彦函,王晓晓,李民. 老年患者腹腔镜泌尿系肿瘤根治术后慢性疼痛的影响因素[J]. 北京大学学报(医学版), 2023, 55(5): 851-856.
[13] 张心灵,林志禹,陈玉杰,董文芳,杨欣. 脊柱后路内固定术后切口愈合不良的整形外科治疗[J]. 北京大学学报(医学版), 2023, 55(5): 910-914.
[14] 马建勋,夏有辰,李比,赵红梅,雷玉涛,布希. 乳腺癌改良根治术后即刻乳房重建的方式选择[J]. 北京大学学报(医学版), 2023, 55(4): 612-618.
[15] 林国中,谢京城,陈晓东,杨军. 成人原发性脊髓拴系综合征的分型及显微外科手术治疗[J]. 北京大学学报(医学版), 2023, 55(4): 641-645.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!