北京大学学报(医学版) ›› 2020, Vol. 52 ›› Issue (4): 743-749. doi: 10.19723/j.issn.1671-167X.2020.04.028

• 论著 • 上一篇    下一篇

牙龈卟啉单胞菌感染对载脂蛋白e基因敲除小鼠动脉粥样硬化的影响

轩艳1,蔡宇2,王啸轩2,石巧2,邱立新1,(),栾庆先2,()   

  1. 1.北京大学口腔医学院·口腔医院,第四门诊部,北京 100081
    2.北京大学口腔医学院·口腔医院,牙周科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081
  • 收稿日期:2018-10-11 出版日期:2020-08-18 发布日期:2020-08-06
  • 通讯作者: 邱立新,栾庆先 E-mail:qiulixin@263.com;kqluanqx@126.com
  • 基金资助:
    国家自然科学基金(81271148);国家自然科学基金(8140030482)

Effect of Porphyromonas gingivalis infection on atherosclerosis in apolipoprotein-E knockout mice

Yan XUAN1,Yu CAI2,Xiao-xuan WANG2,Qiao SHI2,Li-xin QIU1,(),Qing-xian LUAN2,()   

  1. 1. Fourth Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100081, China
    2. Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2018-10-11 Online:2020-08-18 Published:2020-08-06
  • Contact: Li-xin QIU,Qing-xian LUAN E-mail:qiulixin@263.com;kqluanqx@126.com
  • Supported by:
    National Natural Science Foundation of China(81271148);National Natural Science Foundation of China(8140030482)

摘要:

目的: 探讨牙龈卟啉单胞菌(Porphyromonas gingivalis,P. gingivalis)引起的炎症和氧化应激反应对动脉粥样硬化的影响及作用机制。方法: 采用8周龄载脂蛋白e基因敲除(ApoE knockout,ApoE-/-)小鼠建立动脉粥样硬化动物模型,将小鼠随机分为两组:(1)磷酸盐缓冲液(phosphate buffered saline,PBS)健康对照组:8只ApoE-/-小鼠,普通饮食+PBS鼠尾静脉注射;(2)P. gingivalis感染组:8只ApoE-/-小鼠,普通饮食+P. gingivalis鼠尾静脉注射。1周3次,隔天1次,共10次。4周后处死,取心脏组织进行油红O染色,血清进行酶联免疫吸附测定(enzyme-linked immunosorbent assay,ELISA),主动脉进行实时荧光定量PCR以及Western blot检测。结果: P. gingivalis 感染组较PBS健康对照组可以显著加重ApoE-/-小鼠动脉粥样硬化斑块的形成,增加血清中炎症介质,如白细胞介素(interleukin,IL)-1β、IL-6和肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)以及氧化应激介质8-羟脱氧鸟苷(8-hydroxy-2-deoxyguanosine,8-OHDG)表达,增加主动脉组织中IL-1β、IL-6、TNF-α、NADPH 氧化酶(NADPH oxidase,NOX)-2和NOX-4基因的mRNA水平。P. gingivalis感染后在主动脉组织中观察到核转录因子-κB(nuclear factor-kappa B,NF-κB)表达有增高趋势。结论: P.gingivalis感染会加速ApoE-/-小鼠动脉粥样硬化进程,诱导氧化应激和炎症反应;NF-κB信号通路可能是P. gingivalis加速动脉粥样硬化形成的重要作用机制。

关键词: 牙龈卟啉单胞菌, 动脉粥样硬化, 炎症, 氧化应激, NF-κB信号通路

Abstract:

Objective: Studies have indicated that periodontal pathogen Porphyromonas gingivalis (P. gingivalis) infection may contributed to accelerate the development of atherosclerosis. The aim of this study was to investigate the effect of inflammation, oxidative stress and the mechanism on atherosclerosis in apolipoprotein-E knockout (ApoE-/-) mice with P. gingivalis infection. Methods: Eight-week-old male ApoE-/- mice (C57BL/6) were maintained under specific pathogen-free conditions and fed regular chow and sterile water after 1 weeks of housing. The animals were randomly divided into two groups: (a) ApoE-/- + PBS (n=8); (b) ApoE-/- + P.gingivalis strain FDC381 (n=8). Both of the groups received intravenous injections 3 times per week for 4 weeks since 8 weeks of age. The sham control group received injections with phosphate buffered saline only, while the P. gingivalis-challenged group with P.gingivalis strain FDC381at the same time. After 4 weeks, oxidative stress mediators and inflammation cytokines were analyzed by oil red O in heart, Enzyme linked immunosorbent assay (ELISA) in serum, quantitative real-time PCR and Western blot in aorta. Results: In our study, we found accelerated development of atherosclerosis and plaque formation in aorta with oil red O staining, increased oxidative stress markers [8-hydroxy-2-deoxyguanosine (8-OHdG), NADPH oxidase (NOX)-2 and NOX-4], as well as increased inflammation cytokines [interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α)] in the serum and aorta of the P. gingivalis-infected ApoE-/- mice. Compared with the control group, there was a significant increase protein level of nuclear factor-kappa B (NF-κB) in aorta after P. gingivalis infection. Conclusion: Our results suggest that chronic intravenous infection of P. gingivalis in ApoE-/- mice could accelerate the development of atherosclerosis by disturbing the lipid profile and inducing oxidative stress and inflammation. The NF-κB signaling pathway might play a potential role in the P. gingivalis-accelerated atherogenesis.

Key words: Porphyromonas gingivalis, Atherosclerosis, Inflammation, Oxidative stress, NF-κB signaling pathway

中图分类号: 

  • R781.42

表1

Real-time PCR引物序列"

Primer Forward(5'-3') Reverse(3'-5')
IL-1β CTATACCTGTCCTGTGTAATGAAAGA TCTGCTTGTGAGGTGCTGATGTA
IL-6 TAGCTACCTGGAGTACATGAAGAACA TGGTCCTTAGCCACTCCTTCTG
TNF-α AGGCGGTGCCTATGTCTCAG GCCATTTGGGAACTTCTCATC
NOX-2 GCCCAAAGGTGTCCAAGC TCCCCAACGATGCGGATAT
NOX-4 ACCCTGTTGGATGACTGGAA ACCAACGGAAAGGACTGGATA
GAPDH TGTGTCCGTCGTGGATCTGA TTGCTGTTGAAGTCGCAGGAG

图1

ApoE-/-小鼠感染P. gingivalis后,主动脉窦腔动脉粥样硬化斑块组织病理学变化"

图2

ELISA检测PBS健康对照组和P. gingivalis感染组血清样本中8-OHdG(A)、IL-1β(B)、IL-6(C)以及TNF-α(D)蛋白表达水平"

图3

实时荧光定量PCR比较PBS对照组和P. gingivalis感染组ApoE-/-小鼠主动脉中各基因mRNA水平的表达"

图4

Western blot检测PBS对照组和P. gingivalis感染组ApoE-/-小鼠主动脉组织NF-κB蛋白水平"

[1] Cutler CW, Kalmar JR, Genco CA. Pathogenic strategies of the oral anaerobe, Porphyromonas gingivalis[J]. Trends Microbiol, 1995,3(2):45-51.
[2] Holt SC, Kesavalu L, Walker S, et al. Virulence factors of Porphyromonas gingivalis[J]. Periodontol 2000,1999(20):168-238.
[3] DeStefano F, Anda RF, Kahn HS, et al. Dental disease and risk of coronary heart disease and mortality[J]. BMJ, 1993,306(6879):688-691.
[4] Southerland JH, Taylor GW, Moss K, et al. Commonality in chronic inflammatory diseases: Periodontitis, diabetes, and coronary artery disease[J]. Periodontol 2000, 2006,40(1):130-143.
[5] Dogan B, Buduneli E, Emingil G, et al. Characteristics of periodontal microflora in acute myocardial infarction[J]. J Periodontol, 2005,76(5):740-748.
pmid: 15898935
[6] Jain A, Batista EL Jr, Serhan C, et al. Role for periodontitis in the progression of lipid deposition in an animal model[J]. Infect Immun, 2003,71(10):6012-6018.
doi: 10.1128/iai.71.10.6012-6018.2003 pmid: 14500522
[7] Ishihara K, Nabuchi A, Ito R, et al. Correlation between detection rates of periodontopathic bacterial DNA in carotid coronary stenotic artery plaque and in dental plaque samples[J]. J Clin Microbiol, 2004,42(3):1313-1315.
[8] Nakano K, Inaba H, Nomura R, et al. Distribution of Porphyromonas gingivalis fimA genotypes in cardiovascular specimens from Japanese patients[J]. Oral Microbiol Immunol, 2008,23(2):170-172.
[9] Kozarov EV, Dorn BR, Shelburne CE, et al. Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis[J]. Arterioscler Thromb Vasc Biol, 2005,25(3):e17-e18.
[10] Fukasawa A, Kurita-Ochiai T, Hashizume T, et al. Porphyromonas gingivalis accelerates atherosclerosis in C57BL/6 mice fed a high-fat diet[J]. Immunopharmacol Immunotoxicol, 2012,34(3):470-476.
doi: 10.3109/08923973.2011.627866 pmid: 22047042
[11] Yu H, Qi LT, Liu LS, et al. Association of carotid intima-media thickness and atherosclerotic plaque with periodontal status[J]. J Dent Res, 2014,93(8):744-751.
doi: 10.1177/0022034514538973 pmid: 24935064
[12] Lin G, Chen S, Lei L, et al. Effects of intravenous injection of Porphyromonas gingivalis on rabbit inflammatory immune response and atherosclerosis [J/OL]. Mediators Inflamm, 2015: 364391. doi: 10.1155/2015/364391.
[13] Paigen B, Morrow A, Holmes PA, et al. Quantitative assessment of atherosclerotic lesions in mice[J]. Atherosclerosis, 1987,68(3):231-240.
pmid: 3426656
[14] Bélanger M, Rodrigues PH, Dunn WA, et al. Autophagy: A highway for Porphyromonas gingivalis in endothelial cells[J]. Autophagy, 2006,2(3):165-170.
[15] Iwai T. Periodontal bacteremia and various vascular diseases[J]. J Periodontal Res, 2009,44(6):689-694.
[16] Campbell LA, Rosenfeld ME. Infection and atherosclerosis deve-lopment[J]. Arch Med Res, 2015,46(5):339-350.
doi: 10.1016/j.arcmed.2015.05.006 pmid: 26004263
[17] Mattila KJ, Nieminen MS, Valtonen VV, et al. Association between dental health and acute myocardial infarction[J]. BMJ, 1989,298(6676):779-781.
doi: 10.1136/bmj.298.6676.779 pmid: 2496855
[18] Chiu B. Multiple infections in carotid atherosclerotic plaques[J]. Am Heart J, 1999,138(5 Pt 2):S534-S536.
pmid: 10539867
[19] Haraszthy VI, Zambon JJ, Trevisan M, et al. Identification of periodontal pathogens in atheromatous plaques[J]. J Periodontol, 2000,71(10):1554-1560.
[20] Nakano K, Miyamoto E, Tamura K, et al. Distribution of 10 periodontal bacterial species in children and adolescents over a 7-year period[J]. Oral Dis, 2008,14(7):658-664.
doi: 10.1111/j.1601-0825.2008.01452.x pmid: 18565147
[21] Wada K, Kamisaki Y. Roles of oral bacteria in cardiovascular diseases. From molecular mechanisms to clinical cases: Involvement of Porphyromonas gingivalis in the development of human aortic aneurysm[J]. J Pharmacol Sci, 2010,113(2):115-119.
doi: 10.1254/jphs.09r22fm pmid: 20501967
[22] Miyakawa H, Honma K, Qi M, et al. Interaction of Porphyromonas gingivalis with low-density lipoproteins: implications for a role for periodontitis in atherosclerosis[J]. J Periodontal Res, 2004,39(1):1-9.
[23] Li XY, Wang C, Xiang XR, et al. Porphyromonas gingivalis lipopolysaccharide increases lipid accumulation by affecting CD36 and ATP-binding cassette transporter A1 in macrophages[J]. Oncol Rep, 2013,30(3):1329-1336.
pmid: 23835648
[24] Qi M, Miyakawa H, Kuramitsu HK. Porphyromonas gingivalis induces murine macrophage foam cell formation[J]. Microb Pathog, 2003,35(6):259-267.
pmid: 14580389
[25] Ross R. Atherosclerosis is an inflammatory disease[J]. Am Heart J, 1999,138(5 Pt 2):S419-S420.
[26] Hansson GK. Inflammation and immune response in atherosclerosis[J]. Curr Atheroscler Rep, 1999,1(2):150-155.
pmid: 11122704
[27] Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis[J]. Nature, 2011,473(7347):317-325.
pmid: 21593864
[28] Ramji DP, Davies TS. Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets[J]. Cytokine Growth Factor Rev, 2015,26(6):673-685.
doi: 10.1016/j.cytogfr.2015.04.003 pmid: 26005197
[29] Rosenson RS, Elliott M, Stasiv Y, et al. Randomized trial of an inhibitor of secretory phospholipase A2 on atherogenic lipoprotein subclasses in statin-treated patients with coronary heart disease[J]. Eur Heart J, 2011,32(8):999-1005.
doi: 10.1093/eurheartj/ehq374 pmid: 21081550
[30] Hayashi C, Papadopoulos G, Gudino CV, et al. Protective role for TLR4 signaling in atherosclerosis progression as revealed by infection with a common oral pathogen[J]. J Immunol, 2012,189(7):3681-3688.
doi: 10.4049/jimmunol.1201541 pmid: 22956579
[31] Gibson FC 3rd, Ukai T, Genco CA. Engagement of specific innate immune signaling pathways during Porphyromonas gingivalis induced chronic inflammation and atherosclerosis[J]. Front Biosci, 2008(13):2041-2059.
[32] Pan S, Lei L, Chen S, et al. Rosiglitazone impedes Porphyromonas gingivalis-accelerated atherosclerosis by downregulating the TLR/NF-κB signaling pathway in atherosclerotic mice[J]. Int Immunopharmacol, 2014,23(2):701-708.
doi: 10.1016/j.intimp.2014.10.026 pmid: 25445963
[33] Huang CY, Shih CM, Tsao NW, et al. The GroEL protein of Porphyromonas gingivalis regulates atherogenic phenomena in endothelial cells mediated by up-regulating toll-like receptor 4 expression[J]. Am J Transl Res, 2016,8(2):384-404.
pmid: 27158334
[34] Khlgatian M, Nassar H, Chou HH, et al. Fimbria-dependent activation of cell adhesion molecule expression in Porphyromonas gingivalis-infected endothelial cells[J]. Infect Immun, 2002,70(1):257-267.
doi: 10.1128/iai.70.1.257-267.2002 pmid: 11748191
[35] Gitlin JM, Loftin CD. Cyclooxygenase-2 inhibition increases lipopolysaccharide-induced atherosclerosis in mice[J]. Cardiovasc Res, 2009,81(2):400-407.
doi: 10.1093/cvr/cvn286 pmid: 18948273
[36] Huang KT, Kuo L, Liao JC. Lipopolysaccharide activates endothelial nitric oxide synthase through protein tyrosine kinase[J]. Biochem Biophys Res Commun, 1998,245(1):33-37.
doi: 10.1006/bbrc.1998.8384 pmid: 9535778
[37] Obermeier F, Gross V, Scholmerich J, et al. Interleukin-1 production by mouse macrophages is regulated in a feedback fashion by nitric oxide[J]. J Leukoc Biol, 1999,66(5):829-836.
pmid: 10577516
[38] Sorescu D, Weiss D, Lassègue B. Superoxide production and expression of nox family proteins in human atherosclerosis[J]. Circulation, 2002,105(12):1429-1435.
doi: 10.1161/01.cir.0000012917.74432.66 pmid: 11914250
[39] Szöcs K, Lassègue B, Sorescu D, et al. Upregulation of Nox-based NAD(P)H oxidases in restenosis after carotid injury[J]. Arterioscler Thromb Vasc Biol, 2002,22(1):21-27.
doi: 10.1161/hq0102.102189 pmid: 11788456
[40] Anrather J, Racchumi G, Iadecola C. NF-kappaB regulates pha-gocytic NADPH oxidase by inducing the expression of gp91phox[J]. J Biol Chem, 2006,281(9):5657-5667.
doi: 10.1074/jbc.M506172200 pmid: 16407283
[41] Morris KR, Lutz RD, Choi HS, et al. Role of the NF-kappaB signaling pathway and kappaB cis-regulatory elements on the IRF-1 and iNOS promoter regions in mycobacterial lipoarabinomannan induction of nitric oxide[J]. Infect Immun, 2003,71(3):1442-1452.
doi: 10.1128/iai.71.3.1442-1452.2003 pmid: 12595462
[42] Deng WG, Zhu Y, Wu KK. Up-regulation of p300 binding and p50 acetylation in tumor necrosis factor-alpha-induced cyclooxygenase-2 promoter activation[J]. J Biol Chem, 2003,278(7):4770-4777.
doi: 10.1074/jbc.M209286200 pmid: 12471036
[43] Brown K, Gerstberger S, Carlson L, et al. Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation[J]. Science, 1995,267(5203):1485-1488.
doi: 10.1126/science.7878466 pmid: 7878466
[44] Luoma JS, Stralin P, Marklund SL, et al. Expression of extracellular SOD and iNOS in macrophages and smooth muscle cells in human and rabbit atherosclerotic lesions: colocalization with epitopes characteristic of oxidized LDL and peroxynitrite-modified proteins[J]. Arterioscler Thromb Vasc Biol, 1998,18(2):157-167.
doi: 10.1161/01.atv.18.2.157 pmid: 9484979
[45] Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappa B signaling[J]. Cell Res, 2011,21(1):103-115.
doi: 10.1038/cr.2010.178 pmid: 21187859
[46] Stocker R, Keaney JF Jr. Role of oxidative modifications in atherosclerosis[J]. Physiol Rev, 2004,84(4):1381-1478.
doi: 10.1152/physrev.00047.2003 pmid: 15383655
[1] 袁临天,马利沙,刘润园,齐伟,张栌丹,王贵燕,王宇光. 计算机模拟亚甲基蓝与牙龈卟啉单胞菌部分蛋白的分子对接[J]. 北京大学学报(医学版), 2022, 54(1): 23-30.
[2] 伊文霞,魏翠洁,吴晔,包新华,熊晖,常杏芝. 长疗程利妥昔单抗治疗难治性幼年型特发性炎症性肌病3例[J]. 北京大学学报(医学版), 2021, 53(6): 1191-1195.
[3] 白枫,何倚帆,牛亚楠,杨若娟,曹静. 超细颗粒物对大鼠离体灌注心脏功能的影响[J]. 北京大学学报(医学版), 2021, 53(2): 240-245.
[4] 陈怀安,刘硕,李秀君,王哲,张潮,李凤岐,苗文隆. 炎症生物标志物对输尿管尿路上皮癌患者预后预测的临床价值[J]. 北京大学学报(医学版), 2021, 53(2): 302-307.
[5] 杨林承,张瑞涛,郭丽君,肖晗,祖凌云,张幼怡,程秦,赵志伶,葛庆岗,高炜. 低氧状态及炎症反应是新型冠状病毒肺炎患者发生急性心肌损伤的危险因素[J]. 北京大学学报(医学版), 2021, 53(1): 159-166.
[6] 刘滕飞,林涛,任利辉,李广平,彭建军. CMTM5基因与冠状动脉粥样硬化性心脏病的关联研究及机制探讨[J]. 北京大学学报(医学版), 2020, 52(6): 1082-1087.
[7] 胡永玮,刘蕊,罗莉. 慢性多灶性骨髓炎1例及文献回顾[J]. 北京大学学报(医学版), 2020, 52(6): 1140-1145.
[8] 徐涛,韩敬丽,姚伟娟. 雄激素剥夺治疗相关心血管疾病的机制与临床对策[J]. 北京大学学报(医学版), 2020, 52(4): 607-609.
[9] 李军,牛占岳,薛艳,石雪迎,张波,王媛. 重度溃疡性结肠炎合并卡波西肉瘤1例并文献综述[J]. 北京大学学报(医学版), 2020, 52(2): 373-377.
[10] 任川,吴晓月,赵威,陶立元,刘萍,高炜. 心肺适能对动脉粥样硬化性心血管疾病高危患者的保护作用[J]. 北京大学学报(医学版), 2020, 52(1): 152-157.
[11] 王平,宋婧,方翔宇,李鑫,刘栩,贾园,栗占国,胡凡磊. 成红细胞样Ter细胞在胶原诱导性关节炎发病中的作用[J]. 北京大学学报(医学版), 2019, 51(3): 445-450.
[12] 段丽萍,郑朝霞,张宇慧,董捷. 腹膜透析患者营养不良-炎症-心血管疾病与认知功能恶化的关系[J]. 北京大学学报(医学版), 2019, 51(3): 510-518.
[13] 张静,李素芳,陈红,宋俊贤. miR-106b-5p在调节内皮细胞基因表达谱中的作用[J]. 北京大学学报(医学版), 2019, 51(2): 221-227.
[14] 刘佳兴,胡贵平,赵琳,张永明,王丽,贾光,刘瑞祥,冯慧敏,徐华东. 铬酸盐低水平长期职业接触与劳动者早期健康效应[J]. 北京大学学报(医学版), 2019, 51(2): 307-314.
[15] 王昊,陈亮,叶小云. 雷公藤甲素对TM4细胞氧化应激及PI3K/AKT通路的影响[J]. 北京大学学报(医学版), 2018, 50(4): 607-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 田增民, 陈涛, Nanbert ZHONG, 李志超, 尹丰, 刘爽. 神经干细胞移植治疗遗传性小脑萎缩的临床研究(英文稿)[J]. 北京大学学报(医学版), 2009, 41(4): 456 -458 .
[2] 郭岩, 谢铮. 用一代人时间弥合差距——健康社会决定因素理论及其国际经验[J]. 北京大学学报(医学版), 2009, 41(2): 125 -128 .
[3] 成刚, 钱振华, 胡军. 艾滋病项目自愿咨询检测的技术效率分析[J]. 北京大学学报(医学版), 2009, 41(2): 135 -140 .
[4] 卢恬, 朱晓辉, 柳世庆, 郑杰, 邱晓彦. 白细胞介素2促进宫颈癌细胞系HeLaS3免疫球蛋白G的表达[J]. 北京大学学报(医学版), 2009, 41(2): 158 -161 .
[5] 徐莉, 孟焕新, 张立, 陈智滨, 冯向辉, 释栋. 侵袭性牙周炎患者血清中抗牙龈卟啉单胞菌的IgG抗体水平的研究[J]. 北京大学学报(医学版), 2009, 41(1): 52 -55 .
[6] 祁琨, 邓芙蓉, 郭新彪. 纳米二氧化钛颗粒对人肺成纤维细胞缝隙连接通讯的影响[J]. 北京大学学报(医学版), 2009, 41(3): 297 -301 .
[7] 李宏亮*, 安卫红*, 赵扬玉, 朱曦. 妊娠合并高脂血症性胰腺炎行血液净化治疗1例[J]. 北京大学学报(医学版), 2009, 41(5): 599 -601 .
[8] 丰雷, 王玉凤, 曹庆久. 哌甲酯对注意缺陷多动障碍儿童平衡功能影响的开放性研究[J]. 北京大学学报(医学版), 2007, 39(3): 304 -309 .
[9] 刘津, 王玉凤. 父母培训对共患对立违抗性障碍的注意缺陷多动障碍的作用[J]. 北京大学学报(医学版), 2007, 39(3): 310 -314 .
[10] 汪毅, 刘粹, 王玉凤. 社会技能训练对有行为问题儿童影响的随机对照研究[J]. 北京大学学报(医学版), 2007, 39(3): 315 -318 .