北京大学学报(医学版) ›› 2020, Vol. 52 ›› Issue (5): 815-820. doi: 10.19723/j.issn.1671-167X.2020.05.004
王梦莹1,李文咏1,周仁1,王斯悦1,刘冬静1,郑鸿尘1,李静2,李楠3,周治波3,朱洪平3,吴涛1,∆(),胡永华1
Meng-ying WANG1,Wen-yong LI1,Ren ZHOU1,Si-yue WANG1,Dong-jing LIU1,Hong-chen ZHENG1,Jing LI2,Nan LI3,Zhi-bo ZHOU3,Hong-ping ZHU3,Tao WU1,∆(),Yong-hua HU1
摘要:
目的:利用全基因组关联研究(genome-wide association study,GWAS)数据,从基因-基因交互作用和基因-环境交互作用方面探索WNT代谢通路相关基因在中国人群非综合征型唇腭裂(non-syndromic oral clefts,NSOC)发生风险中的作用。方法:本研究样本来自“唇腭裂基因和交互作用的国际合作研究”项目在中国地区募集的806个非综合征型唇裂合并或不合并腭裂(non-syndromic cleft lip with or without cleft palate,NSCL/P)核心家系和202个非综合征型单纯腭裂(non-syndromic cleft palate,NSCP)核心家系。通过收集研究对象的DNA样本和问卷调查获得基因型数据和母亲孕期环境暴露信息,利用此GWAS数据,采用条件Logistic回归模型探讨基因-基因交互作用和基因-环境交互作用,由R软件中的trio软件包完成。经过Bonferroni多重检验校正后,统计学检验的显著性阈值均设为P<3.47×10-4。结果:经过数据质量控制后,NSCL/P核心家系和NSCP核心家系各纳入7个基因上的144个单核苷酸多态性(single nucleotide polymorphisms, SNPs)位点进入分析。在NSCL/P和NSCP家系中,分别有三对SNPs交互作用达到统计学显著性水平(P<3.47×10-4):rs7618735(WNT5A)与rs10848543(WNT5B),rs631948(WNT11)与rs556874(WNT5A)以及rs631948(WNT11)与rs472631(WNT5A);rs589149(WNT11)与rs4765834(WNT5B),rs1402704(WNT11)与rs358792(WNT5A)以及rs1402704(WNT11)与rs358793(WNT5A)。此外,基因-环境交互作用分析未发现显著结果。结论:未发现WNT代谢通路相关基因-环境交互作用在NSCL/P和NSCP发病风险中的作用,但WNT代谢通路相关基因可能通过基因-基因交互作用影响NSOC的发病风险。
中图分类号:
[1] |
Cooper ME, Ratay JS, Marazita ML. Asian oral-facial cleft birth prevalence[J]. Cleft Palate Craniofac J, 2006,43(5):580-589.
doi: 10.1597/05-167 pmid: 16986997 |
[2] |
Wang M, Yuan Y, Wang Z, et al. Prevalence of orofacial clefts among live births in China: A systematic review and meta-analysis[J]. Birth Defects Res, 2017,109(13):1011-1019.
pmid: 28635078 |
[3] |
Leslie EJ, Marazita ML. Genetics of cleft lip and cleft palate[J]. Am J Med Genet C Semin Med Genet, 2013,163C(4):246-258.
doi: 10.1002/ajmg.c.31381 pmid: 24124047 |
[4] |
Mangold E, Ludwig KU, Nothen MM, Breakthroughs in the gene-tics of orofacial clefting[J]. Trends Mol Med, 2011,17(12):725-733.
doi: 10.1016/j.molmed.2011.07.007 pmid: 21885341 |
[5] |
Beaty TH, Marazita ML, Leslie EJ. Genetic factors influencing risk to orofacial clefts: Today’s challenges and tomorrow’s opportunities[J]. F1000Res, 2016,5:2800.
doi: 10.12688/f1000research.9503.1 pmid: 27990279 |
[6] |
Leslie EJ, Carlson JC, Shaffer JR, et al. Association studies of low-frequency coding variants in nonsyndromic cleft lip with or without cleft palate[J]. Am J Med Genet A, 2017,173(6):1531-1538.
doi: 10.1002/ajmg.a.38210 pmid: 28425186 |
[7] |
Mani P, Jarrell A, Myers J, et al. Visualizing canonical Wnt signaling during mouse craniofacial development[J]. Dev Dyn, 2010,239(1):354-363.
doi: 10.1002/dvdy.22072 pmid: 19718763 |
[8] |
Lan Y, Ryan R, Zhang Z, et al. Expression of Wnt9b and activation of canonical Wnt signaling during midfacial morphogenesis in mice[J]. Dev Dyn, 2006,235(5):1448-1454.
doi: 10.1002/dvdy.20723 pmid: 16496313 |
[9] |
Chiquet BT, Blanton SH, Burt A, et al. Variation in WNT genes is associated with nonsyndromic cleft lip with or without cleft palate[J]. Hum Mol Genet, 2008,17(14):2212-2218.
doi: 10.1093/hmg/ddn121 pmid: 18413325 |
[10] |
Menezes R, Letra A, Kim AH, et al. Studies with Wnt genes and nonsyndromic cleft lip and palate[J]. Birth Defects Res A Clin Mol Teratol, 2010,88(11):995-1000.
doi: 10.1002/bdra.20720 pmid: 20890934 |
[11] | 刘小俊, 周小平, 崔毓贵, 等. WNT5A基因rs566926多态性与中国苏皖地区部分人群非综合征性唇腭裂的相关性[J]. 江苏医药, 2010,36(13):1495-1498. |
[12] |
Yao T, Yang L, Li PQ, et al. Association of Wnt3A gene variants with non-syndromic cleft lip with or without cleft palate in Chinese population[J]. Arch Oral Biol, 2011,56(1):73-78.
doi: 10.1016/j.archoralbio.2010.09.002 |
[13] |
Beaty TH, Murray JC, Marazita ML, et al. A genome-wide asso-ciation study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4[J]. Nat Genet, 2010,42(6):525-529.
doi: 10.1038/ng.580 pmid: 20436469 |
[14] |
Beaty TH, Ruczinski I, Murray JC, et al. Evidence for gene-environment interaction in a genome wide study of isolated, non-syndromic cleft palate[J]. Genet Epidemiol, 2011,35(6):469-478.
doi: 10.1002/gepi.20595 |
[15] |
Cordell HJ. Epistasis: What it means, what it doesn’t mean, and statistical methods to detect it in humans[J]. Hum Mol Genet, 2002,11(20):2463-2468.
doi: 10.1093/hmg/11.20.2463 pmid: 12351582 |
[16] |
Christensen K, Juel K, Herskind AM, et al. Long term follow up study of survival associated with cleft lip and palate at birth[J]. BMJ, 2004,328(7453):1405-1408.
doi: 10.1136/bmj.38106.559120.7C pmid: 15145797 |
[17] |
Zhu JL, Basso O, Hasle H, et al. Do parents of children with congenital malformations have a higher cancer risk? A nationwide study in Denmark[J]. Br J Cancer, 2002,87(5):524-528.
doi: 10.1038/sj.bjc.6600488 pmid: 12189550 |
[18] |
Mangold E, Ludwig KU, Birnbaum S, et al. Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate[J]. Nat Genet, 2010,42(1):24-26.
doi: 10.1038/ng.506 pmid: 20023658 |
[19] |
Birnbaum S, Ludwig KU, Reutter H, et al. Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24[J]. Nat Genet, 2009,41(4):473-477.
doi: 10.1038/ng.333 pmid: 19270707 |
[20] |
Grant SF, Wang K, Zhang H, et al. A genome-wide association study identifies a locus for nonsyndromic cleft lip with or without cleft palate on 8q24[J]. J Pediatr, 2009,155(6):909-913.
doi: 10.1016/j.jpeds.2009.06.020 pmid: 19656524 |
[21] | Sun Y, Huang Y, Yin A, et al. Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate[J]. Nat Commun, 2015(6):6414. |
[22] |
Leslie EJ, Carlson JC, Shaffer JR, et al. A multi-ethnic genome-wide association study identifies novel loci for non-syndromic cleft lip with or without cleft palate on 2p24.2, 17q23 and 19q13[J]. Hum Mol Genet, 2016,25(13):2862-2872.
doi: 10.1093/hmg/ddw104 pmid: 27033726 |
[23] | Yu Y, Zuo X, He M, et al. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic hete-rogeneity[J]. Nat Commun, 2017(8):14364. |
[24] |
Xiao Y, Taub MA, Ruczinski I, et al. Evidence for SNP-SNP interaction identified through targeted sequencing of cleft case-parent trios[J]. Genet Epidemiol, 2017,41(3):244-250.
doi: 10.1002/gepi.22023 pmid: 28019042 |
[25] |
Li Q, Kim Y, Suktitipat B, et al. Gene-gene interaction among Wnt genes for oral cleft in trios[J]. Genet Epidemiol, 2015,39(5):385-394.
doi: 10.1002/gepi.21888 pmid: 25663376 |
[26] |
Letra A, Fakhouri W, Fonseca RF, et al. Interaction between IRF6 and TGFA genes contribute to the risk of nonsyndromic cleft lip/palate[J]. PLoS One, 2012,7(9):e45441.
doi: 10.1371/journal.pone.0045441 pmid: 23029012 |
[27] | 张玉. TGFα、Wnt3基因多态性和环境因素的交互作用与非综合征型唇腭裂的关系研究[D]. 武汉: 华中科技大学, 2013. |
[28] | 俞辉明, 程宏宇, 房进. 环境暴露和FGF18、WNT5A基因多态性与NSCL/P的关系[J]. 广东医学, 2011,32(5):588-590. |
[1] | 侯天姣,周治波,王竹青,王梦莹,王斯悦,彭和香,郭煌达,李奕昕,章涵宇,秦雪英,武轶群,郑鸿尘,李静,吴涛,朱洪平. 转化生长因子β信号通路与非综合征型唇腭裂发病风险的基因-基因及基因-环境交互作用[J]. 北京大学学报(医学版), 2024, 56(3): 384-389. |
[2] | 刘媛,原婉琼,李婷,王平章,吕平,吴利新,阮国瑞,韩文玲,莫晓宁. 敲减CMTM3增加急性B淋巴细胞白血病细胞对伊马替尼敏感性[J]. 北京大学学报(医学版), 2022, 54(6): 1238-1243. |
[3] | 王梦莹,李文咏,周仁,王斯悦,刘冬静,郑鸿尘,周治波,朱洪平,吴涛,胡永华. WNT信号通路基因位点单体型与中国汉族人群非综合征型唇腭裂发病风险的关联[J]. 北京大学学报(医学版), 2022, 54(3): 394-399. |
[4] | 李文咏,王梦莹,周仁,王斯悦,郑鸿尘,朱洪平,周治波,吴涛,王红,石冰. 中国人群Hedgehog通路基因与非综合征型唇腭裂的亲源效应[J]. 北京大学学报(医学版), 2020, 52(5): 809-814. |
[5] | 周仁,郑鸿尘,李文咏,王梦莹,王斯悦,李楠,李静,周治波,吴涛,朱洪平. 利用二代测序数据探索SPRY基因家族与中国人群非综合征型唇腭裂的关联[J]. 北京大学学报(医学版), 2019, 51(3): 564-570. |
[6] | 张杰铌,宋凤岐,周绍楠,郑晖,彭丽颖,张倩,赵望泓,张韬文,李巍然,周治波,林久祥,陈峰. 中国唇腭裂患者Sonic hedgehog信号通路相关单核苷酸多态性的分析[J]. 北京大学学报(医学版), 2019, 51(3): 556-563. |
|