北京大学学报(医学版) ›› 2021, Vol. 53 ›› Issue (2): 240-245. doi: 10.19723/j.issn.1671-167X.2021.02.002

• 论著 • 上一篇    下一篇

超细颗粒物对大鼠离体灌注心脏功能的影响

白枫,何倚帆,牛亚楠,杨若娟,曹静()   

  1. 山西医科大学附属第一医院心内科,山西医科大学基础医学院药理教研室,太原 030001
  • 收稿日期:2019-07-17 出版日期:2021-04-18 发布日期:2021-04-21
  • 通讯作者: 曹静 E-mail:13834691242@163.com
  • 基金资助:
    山西省国际合作项目(2012081046)

Effects of ultrafine particulates on cardiac function in rat isolated heart

BAI Feng,HE Yi-fan,NIU Ya-nan,YANG Ruo-juan,CAO Jing()   

  1. Department of Cardiology, The First Hospital of Shanxi Medical University & Department of Pharmacology, Basic Medical School, Shanxi Medical University, Taiyuan 030001, China
  • Received:2019-07-17 Online:2021-04-18 Published:2021-04-21
  • Contact: Jing CAO E-mail:13834691242@163.com
  • Supported by:
    International Cooperation Project of Shanxi(2012081046)

摘要:

目的: 研究超细颗粒物(ultrafine particulates,UFPs)对大鼠离体心脏功能的影响及其机制。方法: 以含或不含UFPs的台式液经Langendorff系统持续灌流大鼠离体心脏模型40 min,观察灌流前后两组大鼠心脏血流动力学指标[左心室舒张压(left ventricular developed pressure,LVDP)、左心室内压最大上升和最大下降速率(±dp/dtmax)及冠脉流量(coronary flow,CF)]的变化。收集肺动脉流出液,采用硫代巴比妥酸法测定丙二醛(malondialdehyde,MDA),水溶性四唑盐法测定超氧化物歧化酶(superoxide dismutase,SOD), 比色法测定总抗氧化能力(total antioxidant capacity,TAOC)。免疫组织化学法和Western blots法测定两组心脏标本p-p38 MAPK、p-JNKs、p-ERKs的表达。结果: 相对于对照组,UFPs灌流组大鼠离体心脏功能指标LVDP、+dp/dtmax、-dp/dtmax、CF分别从(82.6 ± 2.1) mmHg、(1 624 ± 113) mmHg/s、(1 565 ± 116) mmHg/s、(12.0 ± 0.2) mL/min降至灌注结束时的(56.8 ± 4.4) mmHg、(1 066 ± 177) mmHg/s、(1 082 ± 134) mmHg/s、(8.7 ± 0.3) mL/min,各指标灌流结束时相比灌流初始值差异均有统计学意义(P<0.05)。UFPs灌流组肺动脉流出液MDA含量明显高于对照组[(1.95±0.18) nmol/L vs. (0.98±0.14) nmol/L,P<0.05],而SOD、TAOC明显低于对照组[(6.50±1.04) U/mL vs. (12.50±1.87) U/mL,(3.67±0.82) U/mL vs. (6.83±1.16) U/mL, P<0.05 ]。UFPs灌流组p-p38 MAPK、p-JNKs、p-ERKs 较对照组表达明显增加(P<0.05)。结论: UFPs短期暴露对大鼠离体心脏有直接的急性毒性作用,其作用机制可能与氧化应激及MAPK信号通路激活有关。

关键词: 超细颗粒物, 大鼠离体心脏, 氧化应激, MAPK

Abstract:

Objective: To evaluate whether ultrafine particulates (UFPs) have direct deleterious effects on cardiac function through activating MAPK signaling. Methods: Langendorff-perfused Sprague-Dawley rat hearts were randomly divided into 2 groups (n=10/each group). In control group, the rat hearts were perfused with Tyrode’s buffer for 40 min; in UFPs-treated group, the hearts were perfused with UFPs at a concentration of 12.5 mg/L. Cardiac function was determined by measuring left ventricular developed pressure (LVDP), left ventricular peak rate of contraction and relaxation (±dp/dtmax) and coronary flow (CF). The levels of malondialdehyde (MDA), superoxide dismutase (SOD), total anti-oxidant capacity (TAOC) were detected in order to evaluate cardiac oxidative stress via the thiobarbituric acid assay, water soluble tetrazolium salt assay and colorimetry, respectively. The expressions of p-p38 MAPK, p-ERKs and p-JNKs in the myocardium were observed using immunohistochemical staining and Western blots. Results: No significant changes in cardiac function were detected before and after the perfusion in control group while UFPs perfused hearts showed a decline in cardiac function in a time-dependent manner (all P<0.05). In UFPs-treated group, LVDP, +dp/dtmax, -dp/dtmax and CF were statistically reduced from (82.6±2.1) mmHg, (1 624±113) mmHg/s, (1 565±116) mmHg/s, (12.0±0.2) mL/min to (56.8±4.4) mmHg, (1 066±177) mmHg/s, (1 082±134) mmHg/s, (8.7±0.3) mL/min (all P<0.05), respectively. Furthermore, The comparison between the two groups observed that UFPs perfusion caused a significant decrease in cardiac function at 30 and 40 min compared with the control group (all P<0.05). At the end of the perfusion, the level of MDA was increased from (0.98±0.14) nmol/L to (1.95±0.18) nmol/L, while SOD and TAOC were reduced from (12.50±1.87) U/mL and (6.83±1.16) U/mL to (6.50 ±1.04) U/mL and (3.67±0.82) U/mL (all P<0.001) in UFPs group, respectively. In coincidence with these changes, immunohistochemistry and Western blots results showed that the levels of p-p38 MAPK, p-ERKs and p-JNKs in the myocardium significantly increased in UFPs group as compared with control group (all P<0.05). Conclusion: The results of this study demonstrated that the short-term exposure of UFPs to the isolated rat hearts has direct and acute toxic effects on cardiac function, probably related to attenuation of anti-oxidative capacity and activation of MAPK signaling pathways.

Key words: Ultrafine particulates(UFPs), Isolated rat heart, Oxidative stress, MAPK

中图分类号: 

  • R122.7

图1

UFPs(12.5 mg/L)灌注对大鼠离体心脏的影响"

表1

两组肺动脉流出液MDA、TAC、SOD的比较($\bar{x} \pm s$)"

Group n MDA/(nmol/L) SOD/(U/mL) TAOC/(U/mL)
Control 10 0.98±0.14 12.5±1.87 6.83±1.16
UFPs 10 1.95±0.18 6.50±1.04 3.67±0.823
t 29 10.39 6.63
P <0.001 <0.001 0.001

图2

UFPs干预引起心脏功能恶化"

图3

大鼠心肌病理学变化(IHC ×400)"

图4

UFPs灌流30 min诱导MAPK家族成员的磷酸化"

[1] Klompmaker JO, Montagne DR, Meliefste K, et al. Spatial variation of ultrafine particles and black carbon in two cities: results from a short-term measurement campaign[J]. Sci Total Environ, 2015,508:266-275.
[2] Zareba W, Couderc JP, Oberdörster G, et al. ECG parameters and exposure to carbon ultrafine particles in young healthy subjects[J]. Inhal Toxicol, 2009,21(3):223-233.
doi: 10.1080/08958370802492407 pmid: 18991063
[3] Laumbach RJ, Kipen HM, Ko S, et al. A controlled trial of acute effects of human exposure to traffic particles on pulmonary oxidative stress and heart rate variability[J]. Part Fibre Toxicol, 2014,11:45.
pmid: 25361615
[4] Mills NL, Amin N, Robinson SD, et al. Do inhaled carbon nanoparticles translocate directly into the circulation in humans[J]. Am J Respir Crit Care Med, 2006,173(4):426-431.
pmid: 16339922
[5] Lundbäck M, Mills NL, Lucking A, et al. Experimental exposure to diesel exhaust increases arterial stiffness in man[J]. Part Fibre Toxicol, 2009,6:7.
pmid: 19284640
[6] Wang M, Beelen R, Stafoggia M, et al. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts: results from the ESCAPE and TRANSPHORM projects[J]. Environ Int, 2014,66:97-106.
doi: 10.1016/j.envint.2014.01.026 pmid: 24561271
[7] Stewart JC, Chalupa DC, Devlin RB, et al. Vascular effects of ultrafine particles in persons with type 2 diabetes[J]. Environ Health Perspect, 2010,118(12):1692-1698.
pmid: 20822968
[8] Nemmar A, Subramaniyan D, Yasin J, et al. Impact of experimental type 1 diabetes mellitus on systemic and coagulation vulnerability in mice acutely exposed to diesel exhaust particles[J]. Part Fibre Toxicol, 2013,10:14.
pmid: 23587270
[9] Rückerl R, Phipps RP, Schneider A, et al. Ultrafine particles and platelet activation in patients with coronary heart disease: results from a prospective panel study[J]. Part Fibre Toxicol, 2007,4:1.
doi: 10.1186/1743-8977-4-1 pmid: 17241467
[10] Sun Q, Yue P, Ying Z, et al. Air pollution exposure potentiates hypertension through reactive oxygen species-mediated activation of Rho/ROCK[J]. Arterioscler Thromb Vasc Biol, 2008,28(10):1760-1766.
pmid: 18599801
[11] Simkhovich BZ, Marjoram P, Kleinman MT, et al. Direct and acute cardiotoxicity of ultrafine particles in young adult and old rat hearts[J]. Basic Res Cardiol, 2007,102(6):467-475.
[12] Shaw CA, Robertson S, Miller MR, et al. Diesel exhaust particulate: exposed macrophages cause marked endothelial cell activation[J]. Am J Respir Cell Mol Biol, 2011,44(6):840-851.
[13] Kim JB, Kim C, Choi E, et al. Particulate air pollution induces arrhythmia via oxidative stress and calcium calmodulin kinase Ⅱ activation[J]. Toxicol Appl Pharmacol, 2012,259(1):66-73.
[14] Cozzi E, Hazarika S, Stallings HW, et al. Ultrafine particulate matter exposure augments ischemia-reperfusion injury in mice[J]. Am J Physiol Heart Circ Physiol, 2006,291(2):H894-903.
pmid: 16582015
[15] Cao J, Qin G, Shi RZ, et al. Overproduction of reactive oxygen species and activation of MAPKs are involved in apoptosis induced by PM2.5 in rat cardiac H9C2 cells[J]. J Apple Tocicol, 2016,36(4):609-617.
[16] Baines CP, Molkentin JD. STRESS signaling pathways that modulate cardiac myocyte apoptosis[J]. J Mol Cell Cardiol, 2005,38(1):47-62.
doi: 10.1016/j.yjmcc.2004.11.004 pmid: 15623421
[17] Zhu W, Zou Y, Aikawa R, et al. MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes[J]. Circulation, 1999,100(20):2100-2107.
pmid: 10562267
[18] Jarvis IW, Bergvall C, Morales DA, et al. Nanomolar levels of PAHs in extracts from urban air induce MAPK signaling in HepG2 cells[J]. Toxicol Lett, 2014,229(1):25-32.
pmid: 24910982
[19] Rui W, Guan L, Zhang F, et al. PM2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NF-κB-dependent pathway[J]. J Appl Toxicol, 2016,36(1):48-59.
pmid: 25876056
[1] 轩艳,蔡宇,王啸轩,石巧,邱立新,栾庆先. 牙龈卟啉单胞菌感染对载脂蛋白e基因敲除小鼠动脉粥样硬化的影响[J]. 北京大学学报(医学版), 2020, 52(4): 743-749.
[2] 王昊,陈亮,叶小云. 雷公藤甲素对TM4细胞氧化应激及PI3K/AKT通路的影响[J]. 北京大学学报(医学版), 2018, 50(4): 607-612.
[3] 张怡,宋晓明,赵茜,王童,李丽娟,陈婕,徐洪兵,刘贝贝,孙晓燕,贺蓓,黄薇. 大气颗粒物及多环芳烃暴露与慢性阻塞性肺疾病患者全身性氧化应激水平[J]. 北京大学学报(医学版), 2017, 49(3): 394-402.
[4] 和璐. 牙周炎和代谢综合征[J]. 北京大学学报(医学版), 2011, 43(1): 13-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张三. 中文标题测试[J]. 北京大学学报(医学版), 2010, 42(1): 1 -10 .
[2] 赵磊, 王天龙 . 右心室舒张末期容量监测用于肝移植术中容量管理的临床研究[J]. 北京大学学报(医学版), 2009, 41(2): 188 -191 .
[3] 万有, , 韩济生, John E. Pintar. 孤啡肽基因敲除小鼠电针镇痛作用增强[J]. 北京大学学报(医学版), 2009, 41(3): 376 -379 .
[4] 张燕, 韩志慧, 钟延丰, 王盛兰, 李玲玲, 郑丹枫. 骨骼肌活组织检查病理诊断技术的改进及应用[J]. 北京大学学报(医学版), 2009, 41(4): 459 -462 .
[5] 李岳玲, 钱秋瑾, 王玉凤. 儿童注意缺陷多动障碍成人期预后及其预测因素[J]. 北京大学学报(医学版), 2007, 39(3): 337 -340 .
[6] . 书讯[J]. 北京大学学报(医学版), 2007, 39(3): 225 -328 .
[7] 牟向东, 王广发, 刁小莉, 阙呈立. 肺黏膜相关淋巴组织型边缘区B细胞淋巴瘤一例[J]. 北京大学学报(医学版), 2007, 39(4): 346 -350 .
[8] 韩金涛, 赵军, 栾景源, 张龙. 多发结核性腹主动脉瘤一例[J]. 北京大学学报(医学版), 2007, 39(4): 361 -364 .
[9] 燕太强, 杨荣利, 郭卫, 沈丹华. 胫骨平滑肌肉瘤伴全身多发骨转移一例[J]. 北京大学学报(医学版), 2007, 39(4): 369 -373 .
[10] 常杏芝, 卢红梅, 张月华, 秦炯. 以高血压与红斑肢痛为主要表现的汞中毒一例[J]. 北京大学学报(医学版), 2007, 39(4): 377 -380 .