北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (3): 532-540. doi: 10.19723/j.issn.1671-167X.2022.03.020

• 论著 • 上一篇    下一篇

脓毒症小鼠髓源性抑制细胞氨基酸代谢特点

马媛1,张玥2,3,李蕊2,3,邓书伟2,3,秦秋实1,朱鏐娈1,2,3,*()   

  1. 1. 北京大学地坛医院教学医院传染病研究所,北京 100015
    2. 首都医科大学附属北京地坛医院传染病研究所,北京 100015
    3. 新发突发传染病研究北京市重点实验室,北京 100015
  • 收稿日期:2022-01-18 出版日期:2022-06-18 发布日期:2022-06-14
  • 通讯作者: 朱鏐娈 E-mail:zhuliuluan@aliyun.com
  • 基金资助:
    国家自然科学基金(81871586);国家自然科学基金(82172128)

Characteristics of amino acid metabolism in myeloid-derived suppressor cells in septic mice

Yuan MA1,Yue ZHANG2,3,Rui LI2,3,Shu-wei DENG2,3,Qiu-shi QIN1,Liu-luan ZHU1,2,3,*()   

  1. 1. Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing 100015, China
    2. Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
    3. Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
  • Received:2022-01-18 Online:2022-06-18 Published:2022-06-14
  • Contact: Liu-luan ZHU E-mail:zhuliuluan@aliyun.com
  • Supported by:
    the National Natural Science Foundation of China(81871586);the National Natural Science Foundation of China(82172128)

摘要:

目的: 探讨脓毒症小鼠髓源性抑制细胞(myeloid-derived suppressor cells, MDSCs)氨基酸代谢组学特点。方法: 采用盲肠结扎穿孔术(cecal ligation and puncture, CLP)制备脓毒症小鼠模型,将小鼠随机分为假手术组(sham组, n = 10)和CLP组(n = 10)。术后第7天在各组存活小鼠中随机选取5只,分离小鼠骨髓MDSCs,采用安捷伦Seahorse XF技术测量MDSCs细胞的氧气消耗速率(oxygen consumption rate, OCR),采用超高效液相色谱-串联质谱联用技术靶向检测细胞内氨基酸及寡肽含量。通过单维和多维检验分析差异代谢物和潜在生物标志物,并对潜在生物标志物进行通路富集分析。结果: CLP组小鼠骨髓中MDSCs比例(75.53% ± 6.02%)显著大于sham组的MDSCs比例(43.15% ± 7.42%, t = 7.582, P < 0.001),且CLP组小鼠骨髓中MDSCs的基础呼吸速率[(50.03±1.20) pmol/min]、最大呼吸速率[(78.07±2.57) pmol/min]和腺嘌呤核苷三磷酸(adenosine triphosphate, ATP)产生[(25.30±1.21) pmol/min]均显著大于sham组的基础呼吸速率[(34.53±0.96) pmol/min, (t = 17.41, P < 0.001)]、最大呼吸速率[(42.57±1.87) pmol/min, (t = 19.33, P < 0.001)]和ATP产生[(12.63±0.96) pmol/min, (t = 14.18, P < 0.001)]。亮氨酸、苏氨酸、甘氨酸等17种氨基酸含量显著增加(均P < 0.05),是脓毒症MDSCs的潜在生物标志物。增加的氨基酸主要富集在苹果酸-天冬氨酸穿梭、氨回收、丙氨酸代谢、谷胱甘肽代谢、苯丙氨酸和酪氨酸代谢、尿素循环、甘氨酸和丝氨酸代谢、β-丙氨酸代谢、谷氨酸代谢、精氨酸和脯氨酸代谢等代谢途径。结论: CLP组小鼠MDSCs中线粒体氧化磷酸化增强,苹果酸-天冬氨酸穿梭和丙氨酸代谢增强,可能为线粒体有氧呼吸提供大量原料,从而促进MDSCs发挥免疫抑制功能,阻断上述代谢途径或将有助于调节MDSCs功能,为改善脓毒症预后提供新思路。

关键词: 脓毒症, 髓源性抑制细胞, 有氧呼吸, 氨基酸代谢组学

Abstract:

Objective: To explore the amino acid metabolomics characteristics of myeloid-derived suppressor cells (MDSCs) in mice with sepsis induced by the cecal ligation and puncture (CLP). Methods: The sepsis mouse model was prepared by CLP, and the mice were randomly divided into a sham operation group (sham group, n = 10) and a CLP model group (n = 10). On the 7th day after the operation, 5 mice were randomly selected from the surviving mice in each group, and the bone marrow MDSCs of the mice were isolated. Bone marrow MDSCs were separated to measure the oxygen consumption rate (OCR) by using Agilent Seahorse XF technology and to detect the contents of intracellular amino acids and oligopeptides through ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) technology. Different metabolites and potential biomarkers were analyzed by univariate statistical analysis and multivariate statistical analysis. The major metabolic pathways were enriched using the small molecular pathway database (SMPDB). Results: The proportion of MDSCs in the bone marrow of CLP group mice (75.53% ± 6.02%) was significantly greater than that of the sham group (43.15%± 7.42%, t = 7.582, P < 0.001), and the basal respiratory rate [(50.03±1.20) pmol/min], maximum respiration rate [(78.07±2.57) pmol/min] and adenosine triphosphate (ATP) production [(25.30±1.21) pmol/min] of MDSCs in the bone marrow of CLP group mice were significantly greater than the basal respiration rate [(34.53±0.96) pmol/min, (t = 17.41, P < 0.001)], maximum respiration rate [(42.57±1.87) pmol/min, (t = 19.33, P < 0.001)], and ATP production [(12.63±0.96) pmol/min, (t = 14.18, P < 0.001)] of sham group. Leucine, threonine, glycine, etc. were potential biomarkers of septic MDSCs (all P < 0.05). The increased amino acids were mainly enriched in metabolic pathways, such as malate-aspartate shuttle, ammonia recovery, alanine metabolism, glutathione metabolism, phenylalanine and tyrosine metabolism, urea cycle, glycine and serine metabolism, β-alanine metabolism, glutamate metabolism, arginine and proline metabolism. Conclusion: The enhanced mitochondrial oxidative phosphorylation, malate-aspartate shuttle and alanine metabolism in MDSCs of CLP mice may provide raw materials for mitochondrial aerobic respiration, thereby promoting the immunosuppressive function of MDSCs. Blocking the above metabolic pathways may reduce the risk of secondary infection in sepsis and improve the prognosis.

Key words: Sepsis, Myeloid-derived suppressor cell, Aerobic respiration, Amino acid metabolomics

中图分类号: 

  • R363.1

图1

CLP和sham组小鼠骨髓MDSCs比例和氧化呼吸情况"

图2

CLP和sham组小鼠MDSCs的各类代谢物构成"

表1

单维检验分析sham组与CLP组小鼠MDSCs中氨基酸及寡肽含量"

Amino acids Sham group (n=5) CLP group (n=5) t/U value P log2FC
Glycine 386.660±77.645 995.180±65.567 13.390 < 0.001 1.364
Leucine 219.580±34.095 587.560±79.165 9.546 < 0.001 1.420
Aspartic acid 122.680±44.956 555.440±118.618 7.628 0.001 2.179
Lysine 224.020±47.647 666.820±134.086 6.958 0.001 1.574
Histidine 98.200±16.996 202.380±36.155 5.831 0.001 1.043
Asparagine 64.500±28.406 140.580±23.324 4.629 0.002 1.124
Valine 195.400±45.947 548.020±136.323 5.481 0.003 1.488
Threonine 112.160±5.280 269.220±40.306 0.000 0.008 1.322
Serine 444.380±60.045 1 251.500±187.629 0.000 0.008 1.676
Phenylalanine 116.560±11.250 301.400±51.594 0.000 0.008 1.563
Tyrosine 89.080±14.074 243.940±47.185 0.000 0.008 1.393
Glutamate 522.220±186.936 2 490.800 (1 678.900, 2 631.900) 0.000 0.008 2.475
4-hydroxyproline 217.480±54.856 729.100±189.424 0.000 0.008 1.995
Tryptophan 24.700±9.100 103.200±30.850 0.000 0.008 2.405
Alanine 921.900 (870.000, 948.200) 3 029.320±780.214 0.000 0.008 1.801
Proline 96.800 (95.400, 104.800) 375.700±121.282 0.000 0.008 2.085
Taurine 4 646.620±2 425.105 8 336.720±739.823 0.000 0.008 0.472
Citrulline 49.140±18.249 124.040±39.186 3.874 0.009 1.336
Methionine 62.860±20.195 127.240±6.354 0.000 0.012 1.122
5-hydroxylysine 2.516±2.567 15.620±8.233 0.000 0.012 2.204
Aminoadipic acid 14.500 (13.800, 14.900) 42.380±13.225 1.000 0.016 1.814
Glutamine 297.100 (277.400, 300.600) 1 452.940±559.859 1.000 0.016 2.448
α-aminobutyric acid 27.740±14.200 83.200±34.351 3.336 0.019 1.585
Arginine 137.380±68.239 305.500±105.690 2.988 0.021 1.153
Cystine 0.180±0.000 12.376±12.628 2.500 0.025 6.207
Ornithine 91.960±58.453 312.800±160.012 2.899 0.033 1.766
Kynurenine 8.520±1.359 10.340±1.383 2.099 0.069 0.279
Carnosine 20.138±15.920 40.700±24.508 1.573 0.160 1.015
Glutathione 273.980±94.760 189.800 (187.300, 268.800) 7.000 0.310 -0.591

图3

CLP和sham组小鼠MDSCs中代谢物的OPLS-DA多维分析"

表2

多元变量统计分析sham组与CLP组小鼠MDSCs中氨基酸及寡肽含量"

Amino acids Sham group (n=5) CLP group (n=5) VIP Corr.Coeffs.
Leucine 219.580±34.095 587.560±79.165 1.144 0.977
Threonine 112.160±5.280 269.220±40.306 1.142 0.976
Glycine 386.660±77.645 995.180±65.567 1.135 0.970
Serine 444.380±60.045 1251.500±187.629 1.129 0.964
Phenylalanine 116.560±11.250 301.400±51.594 1.124 0.960
Tyrosine 89.080±14.074 243.940±47.185 1.121 0.957
Aspartic acid 122.680±44.956 555.440±118.618 1.117 0.954
Glutamate 522.220±186.936 2 490.800 (1 678.900, 2 631.900) 1.107 0.945
Methionine 62.860±20.195 127.240±6.354 1.107 0.946
Lysine 224.020±47.647 666.820±134.086 1.107 0.946
4-hydroxyproline 217.480±54.856 729.100±189.424 1.087 0.928
Histidine 98.200±16.996 202.380±36.155 1.076 0.919
Tryptophan 24.700±9.100 103.200±30.850 1.075 0.918
Valine 195.400±45.947 548.020±136.323 1.074 0.918
Alanine 921.900 (870.000, 948.200) 3 029.320±780.214 1.024 0.874
Proline 96.800 (95.400, 104.800) 375.700±121.282 1.021 0.872
Asparagine 64.500±28.406 140.580±23.324 1.009 0.862
Aminoadipic acid 14.500 (13.800, 14.900) 42.380±13.225 0.997 0.852
Citrulline 49.140±18.249 124.040±39.186 0.982 0.838
Glutamine 297.100 (277.400, 300.600) 1 452.940±559.859 0.967 0.826
Taurine 4 646.620±2 425.105 8 336.720±739.823 0.961 0.821
α-aminobutyric acid 27.740±14.200 83.200±34.351 0.945 0.807
5-hydroxylysine 2.516±2.567 15.620±8.233 0.925 0.790
Ornithine 91.960±58.453 312.800±160.012 0.888 0.758
Arginine 137.380±68.239 305.500±105.690 0.863 0.737
Cystine 0.180±0.000 12.376±12.628 0.775 0.662
Kynurenine 8.520±1.359 10.340±1.383 0.704 0.601
Carnosine 20.138±15.920 40.700±24.508 0.540 0.461
Glutathione 273.980±94.760 189.800 (187.300, 268.800) 0.362 -0.310

图4

CLP组小鼠MDSCs标志代谢物通路富集分析"

1 Singer M , Deutschman CS , Seymour CW , et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315 (8): 801- 810.
doi: 10.1001/jama.2016.0287
2 徐静媛, 邱海波. 脓毒症治疗的现状与展望[J]. 国际流行病学传染病学杂志, 2021, 48 (4): 259- 262.
doi: 10.3760/cma.j.cn331340-20210618-00126
3 Rudd KE , Johnson SC , Agesa KM , et al. Global, regional, and national sepsis incidence and mortality, 1990—2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395 (10219): 200- 211.
doi: 10.1016/S0140-6736(19)32989-7
4 Schrijver IT , Théroude C , Roger T . Myeloid-derived suppressor cells in sepsis[J]. Front Immunol, 2019, 10, 327.
doi: 10.3389/fimmu.2019.00327
5 Mira JC , Gentile LF , Mathias BJ , et al. Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immuno-suppression and catabolism syndrome[J]. Crit Care Med, 2017, 45 (2): 253- 262.
doi: 10.1097/CCM.0000000000002074
6 Veglia F , Perego M , Gabrilovich D . Myeloid-derived suppressor cells coming of age[J]. Nat Immunol, 2018, 19 (2): 108- 119.
doi: 10.1038/s41590-017-0022-x
7 Consonni FM , Porta C , Marino A , et al. Myeloid-Derived suppressor cells: ductile targets in disease[J]. Front Immunol, 2019, 10, 949.
doi: 10.3389/fimmu.2019.00949
8 Karin N . The Development and homing of myeloid-derived suppressor cells: from a two-stage model to a multistep narrative[J]. Front Immunol, 2020, 11, 557- 586.
doi: 10.3389/fimmu.2020.00557
9 Venet F , Monneret G . Advances in the understanding and treatment of sepsis-induced immunosuppression[J]. Nat Rev Nephrol, 2018, 14 (2): 121- 137.
doi: 10.1038/nrneph.2017.165
10 Mathias B , Delmas AL , Ozrazgat-Baslanti T , et al. Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock[J]. Ann Surg, 2017, 265 (4): 827- 834.
doi: 10.1097/SLA.0000000000001783
11 Darden DB , Bacher R , Brusko MA , et al. Single-cell RNA-seq of human myeloid-derived suppressor cells in late sepsis reveals multiple subsets with unique transcriptional responses: a pilot study[J]. Shock, 2021, 55 (5): 587- 595.
doi: 10.1097/SHK.0000000000001671
12 Wegiel B , Vuerich M , Daneshmandi S , et al. Metabolic switch in the tumor microenvironment determines immune responses to anti-cancer therapy[J]. Front Oncol, 2018, 8, 284.
doi: 10.3389/fonc.2018.00284
13 Won WJ , Deshane JS , Leavenworth JW , et al. Metabolic and functional reprogramming of myeloid-derived suppressor cells and their therapeutic control in glioblastoma[J]. Cell Stress, 2019, 3 (2): 47- 65.
doi: 10.15698/cst2019.02.176
14 Leinwand J , Miller G . Regulation and modulation of antitumor immunity in pancreatic cancer[J]. Nat Immunol, 2020, 21 (10): 1152- 1159.
doi: 10.1038/s41590-020-0761-y
15 Grzywa TM , Sosnowska A , Matryba P , et al. Myeloid cell-derived arginase in cancer immune response[J]. Front Immunol, 2020, 11, 938.
doi: 10.3389/fimmu.2020.00938
16 Rittirsch D , Huber-Lang MS , Flierl MA , et al. Immunodesign of experimental sepsis by cecal ligation and puncture[J]. Nat Protoc, 2009, 4 (1): 31- 36.
doi: 10.1038/nprot.2008.214
17 Su L , Li H , Xie A , et al. Dynamic changes in amino acid concentration profiles in patients with sepsis[J]. PLoS One, 2015, 10 (4): e0121933.
doi: 10.1371/journal.pone.0121933
18 Gunst J , Vanhorebeek I , Thiessen SE , et al. Amino acid supplements in critically ill patients[J]. Pharmacol Res, 2018, 130, 127- 131.
doi: 10.1016/j.phrs.2017.12.007
19 Al-Khami AA , Rodriguez PC , Ochoa AC . Metabolic reprogramming of myeloid-derived suppressor cells (MDSCs) in cancer[J]. Oncoimmunology, 2016, 5 (8): e1200771.
doi: 10.1080/2162402X.2016.1200771
20 Mohammadpour H , MacDonald CR , McCarthy PL , et al. β2-adrenergic receptor signaling regulates metabolic pathways critical to myeloid-derived suppressor cell function within the TME[J]. Cell Rep, 2021, 37 (4): 109883.
doi: 10.1016/j.celrep.2021.109883
21 Altinok O , Poggio JL , Stein DE , et al. Malate-aspartate shuttle promotes l-lactate oxidation in mitochondria[J]. J Cell Physiol, 2020, 235 (3): 2569- 2581.
doi: 10.1002/jcp.29160
22 Mansouri S , Shahriari A , Kalantar H , et al. Role of malate dehydrogenase in facilitating lactate dehydrogenase to support the glycolysis pathway in tumors[J]. Biomed Rep, 2017, 6 (4): 463- 467.
doi: 10.3892/br.2017.873
23 Li X , Li Y , Yu Q , et al. Metabolic reprogramming of myeloid-derived suppressor cells: an innovative approach confronting challenges[J]. J Leukoc Biol, 2021, 110 (2): 257- 270.
doi: 10.1002/JLB.1MR0421-597RR
24 Bozkus CC , Elzey BD , Crist SA , et al. Expression of cationic amino acid transporter 2 is required for myeloid-derived suppressor cell-mediated control of t cell immunity[J]. J Immunol, 2015, 195 (11): 5237- 5250.
doi: 10.4049/jimmunol.1500959
25 Srivastava MK , Sinha P , Clements VK , et al. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine[J]. Cancer Res, 2010, 70 (1): 68- 77.
doi: 10.1158/0008-5472.CAN-09-2587
26 Zhao H , Raines LN , Huang SC . Carbohydrate and amino acid metabolism as hallmarks for innate immune cell activation and function[J]. Cells, 2020, 9 (3): 562.
doi: 10.3390/cells9030562
[1] 刘余庆,卢剑,郝一昌,肖春雷,马潞林. 经皮肾镜取石术后尿脓毒血症的相关危险因素及预测模型[J]. 北京大学学报(医学版), 2018, 50(3): 507-513.
[2] 张欣, 茹喜芳, 王颖, 李星, 桑田, 冯琪. 新生儿重症监护病房中新生儿真菌败血症的临床特点[J]. 北京大学学报(医学版), 2017, 49(5): 789-793.
[3] 刘慧琳, 田勍, 洪天配, 刘桂花, 潘欢, 王海宁, 高洪伟. 脓毒症患者中血清程序化细胞死亡因子5水平的变化[J]. 北京大学学报(医学版), 2013, 45(2): 238-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘云飞,党佳佳,钟盼亮,马宁,师嫡,宋逸. 1990—2019年中国5~24岁人群伤害死亡率分析[J]. 北京大学学报(医学版), 2022, 54(3): 498 -504 .
[2] 周吴平,杨树涵,穆楠,简伟研. 中国卫生人力配置公平性变化趋势分析[J]. 北京大学学报(医学版), 2022, 54(3): 477 -482 .
[3] 刘光奇,庞元捷,吴疆,吕敏,于孟轲,李雨橦,黄旸木. 2013—2019年流感季北京市住院老年人流感疫苗接种趋势分析[J]. 北京大学学报(医学版), 2022, 54(3): 505 -510 .
[4] 郭玲*, 李文静*, 徐明江, 王宪. 吸入脂多糖诱导小鼠急性肺炎模型的建立[J]. 北京大学学报(医学版), 2009, 41(2): 226 -229 .
[5] 来丽叶,窦长松,智翠娜,陈洁,马雪,赵鹏,姚碧云. 姜黄素干预通过促进自噬改善氯化锰所致的大鼠神经行为损伤[J]. 北京大学学报(医学版), 2022, 54(3): 400 -411 .
[6] 田靖,秦满,陈洁,夏斌. 失活剂烧伤致乳磨牙早失及恒牙胚丧失2例[J]. 北京大学学报(医学版), 2022, 54(2): 381 -385 .
[7] 闵鹤葳,吴一波,孙昕霙. 我国18岁及以上人群家庭健康功能、大五人格与吸烟的关系[J]. 北京大学学报(医学版), 2022, 54(3): 483 -489 .
[8] 邓宇含,姜勇,王子尧,刘爽,汪雨欣,刘宝花. 基于长短期记忆网络和Logistic回归的重症监护病房脑卒中患者院内死亡风险预测[J]. 北京大学学报(医学版), 2022, 54(3): 458 -467 .
[9] 陈明隆,刘笑晗,郭静. 新型冠状病毒肺炎疫情下儿童父母社会支持与养育倦怠的关系[J]. 北京大学学报(医学版), 2022, 54(3): 520 -525 .
[10] 王佳敏,刘秋萍,张明露,巩超,刘舒丹,陈暐烨,沈鹏,林鸿波,高培,唐迅. 基于马尔可夫模型的社区人群糖尿病筛查预防心血管病的效果评价[J]. 北京大学学报(医学版), 2022, 54(3): 450 -457 .