北京大学学报(医学版) ›› 2023, Vol. 55 ›› Issue (1): 174-180. doi: 10.19723/j.issn.1671-167X.2023.01.027

• 技术方法 • 上一篇    下一篇

基于三维下颌骨平均模型的颌骨标志点自动确定方法

高梓翔1,王勇1,2,温奥楠2,朱玉佳2,秦庆钊2,张昀3,王晶4,*(),赵一姣1,*()   

  1. 1. 北京大学医学部医学技术研究院,北京 100191
    2. 北京大学口腔医学院·口腔医院数字化研究中心,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,北京 100081
    3. 兰州市口腔医院,兰州 730031
    4. 北京大学口腔医学院·口腔医院口腔颌面外科,北京 100081
  • 收稿日期:2022-10-10 出版日期:2023-02-18 发布日期:2023-01-31
  • 通讯作者: 王晶,赵一姣 E-mail:wjing0122@163.com;kqcadcs@bjmu.edu.cn
  • 基金资助:
    国家自然科学基金(82071171);国家自然科学基金(81870815);甘肃省重点研发计划项目(21YF5FA165);北大医学顶尖学科及学科群发展专项(BMU2022XKQ003);北京大学口腔医院新技术新疗法项目(PKUSSNCT-22A06)

Automatic determination of mandibular landmarks based on three-dimensional mandibular average model

Zi-xiang GAO1,Yong WANG1,2,Ao-nan WEN2,Yu-jia ZHU2,Qing-zhao QIN2,Yun ZHANG3,Jing WANG4,*(),Yi-jiao ZHAO1,*()   

  1. 1. Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
    2. Center of Digital Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry, Beijing 100081, China
    3. Lanzhou Stomatological Hospital, Lanzhou 730031, China
    4. Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
  • Received:2022-10-10 Online:2023-02-18 Published:2023-01-31
  • Contact: Jing WANG,Yi-jiao ZHAO E-mail:wjing0122@163.com;kqcadcs@bjmu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(82071171);the National Natural Science Foundation of China(81870815);the Key R & D Program of Gansu Province of China(21YF5FA165);the Peking University Medicine Fund for World's Leading Discipline or Discipline Cluster Development(BMU2022XKQ003);the New Clinical Techniques and Therapies of Peking University School and Hospital of Stomatology(PKUSSNCT-22A06)

RICH HTML

  

摘要:

目的: 探索一种高效、自动确定三维下颌骨数据解剖标志点的方法,并对该方法的定点效果进行初步评价。方法: 选取40例颅颌面三维形态正常患者的CT数据(其中30例用来建立三维下颌骨平均模型,10例作为测试本研究方法确定下颌骨标志点效果的测试数据),将数据导入到Mimics软件中进行下颌骨三维重建。在这40例三维重建后的下颌骨数据中,选取与中国人下颌骨特征均值更为接近的30例,在MATLAB软件中基于普氏分析(Procrustes analysis)算法对此30例下颌骨数据进行尺寸归一化处理,并在Geomagic Wrap软件中,构建上述30例下颌骨数据的三维平均形状模型,通过对称化处理、曲率采样、索引标记等过程,构建出具有18 996个类标志点和19个下颌骨解剖标志点索引的三维下颌骨结构化模板。应用开源非刚性配准算法程序Meshmonk,将上述构建的三维下颌骨模板通过非刚性变形与患者三维下颌骨数据进行匹配,获得患者三维下颌骨数据的19个解剖标志点位置。与口腔专家手动标注的标志点位置误差(定点误差)进行比较,评价本方法的准确性。结果: 将本研究方法应用于10例无显著下颌骨形态畸形患者数据,19个标志点的平均定点误差为1.42 mm,其中最小和最大误差分别为喙突顶点[右:(1.01±0.44) mm;左:(0.56±0.14) mm]和下颌升支前缘点[右:(2.52±0.95) mm;左:(2.57±1.10) mm],中线点平均定点误差为(1.15±0.60) mm,双侧点平均定点误差为(1.51±0.67) mm。结论: 基于三维下颌骨平均模型和非刚性配准算法的三维下颌骨解剖标志点自动确定方法,可有效提高三维下颌骨数据特征自动标注的效率,其对无显著畸形下颌骨数据解剖标志点的自动确定效果可基本满足口腔临床应用的需求,对畸形下颌骨数据的标注效果有待进一步测试。

关键词: 下颌骨, 成像, 三维, 解剖标志, 结构模型

Abstract:

Objective: To explore an efficient and automatic method for determining the anatomical landmarks of three-dimensional(3D) mandibular data, and to preliminarily evaluate the performance of the method. Methods: The CT data of 40 patients with normal craniofacial morphology were collected (among them, 30 cases were used to establish the 3D mandibular average model, and 10 cases were used as test datasets to validate the performance of this method in determining the mandibular landmarks), and the 3D mandibular data were reconstructed in Mimics software. Among the 40 cases of mandibular data after the 3D reconstruction, 30 cases that were more similar to the mean value of Chinese mandibular features were selected, and the size of the mandibular data of 30 cases was normalized based on the Procrustes analysis algorithm in MATLAB software. Then, in the Geomagic Wrap software, the 3D mandibular average shape model of the above 30 mandibular data was constructed. Through symmetry processing, curvature sampling, index marking and other processing procedures, a 3D mandible structured template with 18 996 semi-landmarks and 19 indexed mandibular anatomical landmarks were constructed. The open source non-rigid registration algorithm program Meshmonk was used to match the 3D mandible template constructed above with the tested patient's 3D mandible data through non-rigid deformation, and 19 anatomical landmark positions of the patient's 3D mandible data were obtained. The accuracy of the research method was evaluated by comparing the distance error of the landmarks manually marked by stomatological experts with the landmarks marked by the method of this research. Results: The method of this study was applied to the data of 10 patients with normal mandibular morphology. The average distance error of 19 landmarks was 1.42 mm, of which the minimum errors were the apex of the coracoid process [right: (1.01±0.44) mm; left: (0.56±0.14) mm] and maximum errors were the anterior edge of the lowest point of anterior ramus [right: (2.52±0.95) mm; left: (2.57±1.10) mm], the average distance error of the midline landmarks was (1.15±0.60) mm, and the average distance error of the bilateral landmarks was (1.51±0.67) mm. Conclusion: The automatic determination method of 3D mandibular anatomical landmarks based on 3D mandibular average shape model and non-rigid registration algorithm established in this study can effectively improve the efficiency of automatic labeling of 3D mandibular data features. The automatic determination of anatomical landmarks can basically meet the needs of oral clinical applications, and the labeling effect of deformed mandible data needs to be further tested.

Key words: Mandible, Imaging, three-dimensional, Anatomic landmarks, Structural models

中图分类号: 

  • R782.2

图1

三维下颌骨模板的构建流程"

表1

模板法确定三维下颌骨标志点的定点误差"

Number Name of landmarks Abbreviations Distance error/mm, $\bar x \pm s$
1 Condylion (right) CoR 1.94±0.60
2 Condylion (left) CoL 2.24±0.97
3 Condyle lateral point (right) CLPR 0.77±0.50
4 Condyle lateral point (left) CLPL 0.96±0.38
5 Condyle medial point (right) CMPR 1.43±0.53
6 Condyle medial point (left) CMPL 1.37±0.44
7 Coronoid process (right) CPR 1.01±0.44
8 Coronoid process (left) CPL 0.56±0.14
9 Lowest point of the sigmoid notch (right) LPSNR 1.00±0.60
10 Lowest point of the sigmoid notch (left) LPSNL 0.75±0.37
11 Gonion (right) GoR 2.23±0.73
12 Gonion (left) GoL 1.82±1.17
13 Lowest anterior ramus (right) LARR 2.52±0.95
14 Lowest anterior ramus (left) LARL 2.57±1.10
15 Pogonion Pog 0.83±0.36
16 Menton Me 1.04±0.39
17 Gnathion Gn 0.84±0.32
18 Lower incisor LI 0.72±0.39
19 Supramental B 2.33±1.06

图2

三维下颌骨模板及19个解剖标志点"

图3

模板法确定下颌骨解剖标志点的效果"

1 Kakarala K , Shnayder Y , Tsue TT , et al. Mandibular reconstruction[J]. Oral Oncol, 2018, 77, 111- 117.
doi: 10.1016/j.oraloncology.2017.12.020
2 中华口腔医学会口腔颌面修复专业委员会. 下颌骨缺损修复重建治疗专家共识[J]. 中华口腔医学杂志, 2019, 54 (7): 433- 439.
3 Bak M , Jacobson AS , Buchbinder D , et al. Contemporary reconstruction of the mandible[J]. Oral Oncol, 2010, 46 (2): 71- 76.
doi: 10.1016/j.oraloncology.2009.11.006
4 张鑫, 刘洋, 周建萍, 等. 点构法构建下颌骨正中矢状平面的初步探究[J]. 上海交通大学学报(医学版), 2019, 39 (1): 52- 59.
doi: 10.3969/j.issn.1674-8115.2019.01.010
5 周子疌, 朱向阳, 韩婧, 等. 基于机器学习的颌骨特征点还原法辅助跨中线颌骨缺损重建[J]. 中国口腔颌面外科杂志, 2020, 18 (4): 323- 327.
doi: 10.19438/j.cjoms.2020.04.007
6 Wang E , Tran KL , D'Heygere E , et al. Predicting the premorbid shape of a diseased mandible[J]. Laryngoscope, 2021, 131 (3): E781- E786.
7 史雨林. 骨性Ⅲ类患者正颌手术前后面部软硬组织变化的3D研究[D]. 西安: 中国人民解放军空军军医大学, 2018.
8 潘思思, 王昕, 戴微微, 等. 替牙期儿童下颌骨发育的三维特征[J]. 温州医科大学学报, 2014, 44 (10): 712- 717.
doi: 10.3969/j.issn.2095-9400.2014.10.004
9 Neelapu BC , Kharbanda OP , Sardana V , et al. Automatic localization of three-dimensional cephalometric landmarks on CBCT images by extracting symmetry features of the skull[J]. Dentomaxillofac Radiol, 2018, 47 (2): 20170054.
doi: 10.1259/dmfr.20170054
10 Zhang J , Liu M , Wang L , et al. Joint craniomaxillofacial bone segmentation and landmark digitization by context-guided fully convolutional networks[J]. Med Image Comput Comput Assist Interv, 2017, 10434, 720- 728.
11 Zhang J , Liu M , Wang L , et al. Context-guided fully convolu-tional networks for joint craniomaxillofacial bone segmentation and landmark digitization[J]. Med Image Anal, 2020, 60, 101621.
doi: 10.1016/j.media.2019.101621
12 Zheng YF, Liu D, Georgescu B, et al. 3D deep learning for efficient and robust landmark detection in volumetric data: 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)[C]. Munich, Germany: Springer, 2015: 565-572.
13 White JD , Ortega-Castrillón A , Matthews H , et al. MeshMonk: Open-source large-scale intensive 3D phenotyping[J]. Sci Rep, 2019, 9 (1): 6085.
doi: 10.1038/s41598-019-42533-y
14 任敏. 基于MSCT汉族成年人群活体下颌骨三维测量数据库的建立及三维测量研究[D]. 北京: 北京协和医学院, 2008.
15 Goodall C . Procrustes methods in the statistical analysis of shape[J]. J R Stat Soc B, 1991, 53 (2): 285- 321.
16 温奥楠, 朱玉佳, 郑盛文, 等. 基于三维人脸模板的颜面解剖标志点自动定点方法初探[J]. 中华口腔医学杂志, 2022, 57 (4): 358- 365.
doi: 10.3760/cma.j.cn112144-20210913-00409
17 Ghoddousi H , Edler R , Haers P , et al. Comparison of three methods of facial measurement[J]. Int J Oral Maxillofac Surg, 2007, 36 (3): 250- 258.
doi: 10.1016/j.ijom.2006.10.001
18 Douglas TS . Image processing for craniofacial landmark identification and measurement: A review of photogrammetry and cephalo-metry[J]. Comput Med Imaging Graph, 2004, 28 (7): 401- 409.
doi: 10.1016/j.compmedimag.2004.06.002
19 Abu A , Ngo CG , Abu-Hassan NIA , et al. Automated craniofacial landmarks detection on 3D image using geometry characteristics information[J]. BMC Bioinformatics, 2019, 19 (Suppl 13): 548.
20 Liang S, Wu J, Weinberg SM, et al. Improved detection of landmarks on 3D human face data: 35th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC)[C] Osaka, Japan: Institule of Electrical and Electronics Engineers, 2013: 6482-6485.
21 Wang K , Zhao X , Gao W , et al. A coarse-to-fine approach for 3D facial landmarking by using deep feature fusion[J]. Symmetry, 2018, 10 (8): 308.
doi: 10.3390/sym10080308
22 Paulsen RR, Juhl KA, Haspang TM, et al. Multi-view consensus CNN for 3D facial landmark placement: 14th Asian Conference on Computer Vision (ACCV)[C]. Australia: Springer, 2019: 706-719.
23 李婧宇. 北方汉族女性三维平均脸的构建并用于面部形态随年龄变化研究[D]. 北京: 北京协和医学院, 2017.
24 Kuijpers M , Maal T , Meulstee JW , et al. Nasolabial shape and aesthetics in unilateral cleft lip and palate: An analysis of nasolabial shape using a mean 3D facial template[J]. Int J Oral Maxillofac Surg, 2021, 50 (2): 267- 272.
doi: 10.1016/j.ijom.2020.06.003
25 Damstra J , Fourie Z , De Wit M , et al. A three-dimensional comparison of a morphometric and conventional cephalometric midsagittal planes for craniofacial asymmetry[J]. Clin Oral Investig, 2012, 16 (1): 285- 294.
doi: 10.1007/s00784-011-0512-4
26 Fagertun J , Harder S , Rosengren A , et al. 3D facial landmarks: Inter-operator variability of manual annotation[J]. BMC Med Imaging, 2014, 14, 35.
doi: 10.1186/1471-2342-14-35
[1] 徐心雨,吴灵,宋凤岐,李自力,张益,刘筱菁. 基于下颌运动轨迹的正颌外科术中下颌骨髁突定位方法及初步精度验证[J]. 北京大学学报(医学版), 2024, 56(1): 57-65.
[2] 王聪伟,高敏,于尧,章文博,彭歆. 游离腓骨瓣修复下颌骨缺损术后义齿修复的临床分析[J]. 北京大学学报(医学版), 2024, 56(1): 66-73.
[3] 卢汉,张建运,杨榕,徐乐,李庆祥,郭玉兴,郭传瑸. 下颌牙龈鳞状细胞癌患者预后的影响因素[J]. 北京大学学报(医学版), 2023, 55(4): 702-707.
[4] 张雯,刘筱菁,李自力,张益. 基于解剖标志的鼻翼基底缩窄缝合术对正颌患者术后鼻唇部形态的影响[J]. 北京大学学报(医学版), 2023, 55(4): 736-742.
[5] 周伟,安金刚,荣起国,张益. 下颌骨颏部骨折联合双侧髁突囊内骨折致伤机制的三维有限元分析[J]. 北京大学学报(医学版), 2021, 53(5): 983-989.
[6] 李博文,吴唯伊,唐琳,张一,刘玉华. 改良猪小肠黏膜下层可吸收膜在兔下颌骨缺损早期愈合中的作用[J]. 北京大学学报(医学版), 2019, 51(5): 887-892.
[7] 李明哲,王晓霞,李自力,伊彪,梁成,何伟. 计算机导航辅助下口内入路髁突切除术精确性分析[J]. 北京大学学报(医学版), 2019, 51(1): 182-186.
[8] 戴帆帆,刘怡,许天民,陈贵. 探索成人正畸前后下颌三维数字化模型的重叠方法[J]. 北京大学学报(医学版), 2018, 50(2): 271-278.
[9] 李世赢,李刚,冯海兰,潘韶霞. 锥形束CT分析下颌无牙颌患者前部颌弓形态对“All-on-4”种植设计的影响[J]. 北京大学学报(医学版), 2017, 49(4): 699-703.
[10] 何伟, 谢晓艳, 王兴, 王晓霞, 傅开元, 李自力. 上颌Le FortⅠ型分块截骨术及双侧下颌升支矢状劈开术对骨性Ⅲ类错牙合畸形患者髁突位置的影响[J]. 北京大学学报(医学版), 2015, 47(5): 829-833.
[11] 陈全, 郭传瑸, 高涛. 54例大致正常成年汉族人下颌骨三维CT形态学测量[J]. 北京大学学报(医学版), 2015, 47(1): 113-119.
[12] 蒋析, 林野, 胡秀莲, 邸萍, 罗佳, 李健慧. 下颌后牙游离缺失伴重度垂直骨量不足的计算机 辅助种植修复[J]. 北京大学学报(医学版), 2014, 46(2): 294-298.
[13] 赵莹,董颖韬,王晓燕,王祖华,李刚,刘木青,傅开元. 4 674颗下颌前牙根管构型的锥形束CT分析[J]. 北京大学学报(医学版), 2014, 46(1): 95-99.
[14] 张磊,李云霞,康艳凤,杨广聚,谢秋菲. 自主后退法和双手引导法确定下颌后退接触位切点位移的比较研究[J]. 北京大学学报(医学版), 2014, 46(1): 67-70.
[15] 王霄, 张益, 李江明. 髁突矢状骨折继发颞下颌关节强直动物模型的建立[J]. 北京大学学报(医学版), 2011, 43(6): 903-907.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨天智, 陈大兵, 张强. 不同吸收促进剂及酶抑制剂对胰岛素体内及体外口腔黏膜渗透性的影响[J]. 北京大学学报(医学版), 2001, 33(3): 238 -242 .
[2] 柳晓辉, 那加, 刘玲玲, 罗斌. 头颈部血管肉瘤3例[J]. 北京大学学报(医学版), 2001, 33(3): 288 -289 .
[3] 梁成, 王兴, 伊彪, 李自力, 王晓霞. 骨性颞下颌关节强直伴小颌畸形及阻塞性睡眠呼吸暂停综合征的牵引成骨治疗[J]. 北京大学学报(医学版), 2002, 34(2): 112 -116 .
[4] 郭应禄, 张凯. 临床研究所要创高水平医疗[J]. 北京大学学报(医学版), 2002, 34(5): 431 -433 .
[5] 方鹏骞, 徐娟, 张佳慧, 李翠, 杨芳, 孔鹏, 孙杨. 艾滋病高危人群规模间接估计方法的应用及其结果的外推研究[J]. 北京大学学报(医学版), 2008, 40(2): 214 -218 .
[6] 胡维亨, 任军. 人乙型肝炎病毒DNA阳性血清对人骨髓间充质干细胞向肝细胞分化的影响[J]. 北京大学学报(医学版), 2008, 40(5): 459 -464 .
[7] 龚继芳, 袁艳华, 宋国红, 余靖, 贾军, 任军. CD44+/CD24-/low/ABCG2-乳腺癌干细胞比例增高与临床治疗相关的探索性研究[J]. 北京大学学报(医学版), 2008, 40(5): 465 -470 .
[8] 邸立军, 任军, 宋国红, 余靖, 方健, 车利, 祝毓琳. 自体外周血CD34+干细胞来源树突状细胞体外扩增治疗恶性体腔积液[J]. 北京大学学报(医学版), 2008, 40(5): 486 -488 .
[9] 张勇, 栾庆先. 牙周维护治疗在保持牙周长期疗效中的作用[J]. 北京大学学报(医学版), 2011, 43(1): 29 -33 .
[10] 曾百进, 余日月, 周永胜, 徐军, 倪永伟, 刘云松, 许永伟. rhTNF-α对成骨向分化前后的人脂肪基质细胞分泌血管生成相关生长因子的影响[J]. 北京大学学报(医学版), 2009, 41(5): 565 -570 .