北京大学学报(医学版) ›› 2023, Vol. 55 ›› Issue (2): 201-209. doi: 10.19723/j.issn.1671-167X.2023.02.002

• 述评 • 上一篇    下一篇

肿瘤病理学研究的进展和展望

周桥1,2,*()   

  1. 1 四川大学华西医院病理科, 成都 610041
    2 四川大学华西医院病理研究室, 成都 610041
  • 收稿日期:2022-11-15 出版日期:2023-04-18 发布日期:2023-04-12
  • 通讯作者: 周桥 E-mail:zhou_qiao@hotmail.com

桥 周1,2,*()   

  • Received:2022-11-15 Online:2023-04-18 Published:2023-04-12
  • Contact: 桥 周 E-mail:zhou_qiao@hotmail.com

关键词: 肿瘤病理学, 分子机制, 肿瘤代谢, 表观遗传, RNA修饰, 非编码RNA, 微生物组

中图分类号: 

  • R365
1 Hanahan D . Hallmarks of cancer: New dimensions[J]. Cancer Discov, 2022, 12 (1): 31- 46.
doi: 10.1158/2159-8290.CD-21-1059
2 Bailey MH , Tokheim C , Porta-Pardo E , et al. Comprehensive characterization of cancer driver genes and mutations[J]. Cell, 2018, 173 (2): 371- 385.
doi: 10.1016/j.cell.2018.02.060
3 Castro E , Romero-Laorden N , Del-Pozo A , et al. PROREPAIR-B: A prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer[J]. J Clin Oncol, 2019, 37 (6): 490- 503.
doi: 10.1200/JCO.18.00358
4 Abida W , Patnaik A , Campbell D , et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration[J]. J Clin Oncol, 2020, 38 (32): 3763- 3772.
doi: 10.1200/JCO.20.01035
5 Salem ME , Bodor JN , Puccini A , et al. Relationship between MLH1, PMS2, MSH2 and MSH6 gene-specific alterations and tumor mutational burden in 1 057 microsatellite instability-high solid tumors[J]. Int J Cancer, 2020, 147 (10): 2948- 2956.
doi: 10.1002/ijc.33115
6 Abida W , Cheng ML , Armenia J , et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade[J]. JAMA Oncol, 2019, 5 (4): 471- 478.
doi: 10.1001/jamaoncol.2018.5801
7 Yang L , Liu Q , Zhang X , et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25[J]. Nature, 2020, 583 (7814): 133- 138.
doi: 10.1038/s41586-020-2394-6
8 Li Y , He X , Lu X , et al. METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions[J]. Nat Commun, 2022, 13 (1): 6350.
doi: 10.1038/s41467-022-34209-5
9 Delaunay S , Pascual G , Feng B , et al. Mitochondrial RNA modifications shape metabolic plasticity in metastasis[J]. Nature, 2022, 607 (7919): 593- 603.
doi: 10.1038/s41586-022-04898-5
10 Cui H , Yi H , Bao H , et al. The SWI/SNF chromatin remodeling factor DPF3 regulates metastasis of ccRCC by modulating TGF-beta signaling[J]. Nat Commun, 2022, 13 (1): 4680.
doi: 10.1038/s41467-022-32472-0
11 Na F , Pan X , Chen J , et al. KMT2C deficiency promotes small cell lung cancer metastasis through DNMT3A-mediated epigenetic reprogramming[J]. Nat Cancer, 2022, 3 (6): 753- 767.
doi: 10.1038/s43018-022-00361-6
12 Ge X , Li M , Yin J , et al. Fumarate inhibits PTEN to promote tumorigenesis and therapeutic resistance of type 2 papillary renal cell carcinoma[J]. Mol Cell, 2022, 82 (7): 1249- 1260.
doi: 10.1016/j.molcel.2022.01.029
13 Sulkowski PL , Oeck S , Dow J , et al. Oncometabolites suppress DNA repair by disrupting local chromatin signalling[J]. Nature, 2020, 582 (7813): 586- 591.
doi: 10.1038/s41586-020-2363-0
14 Sciacovelli M , Goncalves E , Johnson TI , et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition[J]. Nature, 2016, 537 (7621): 544- 547.
doi: 10.1038/nature19353
15 Shi Z , Ge X , Li M , et al. Argininosuccinate lyase drives activation of mutant TERT promoter in glioblastomas[J]. Mol Cell, 2022, 82 (20): 3919- 3931.
doi: 10.1016/j.molcel.2022.09.024
16 Xu M , Chen X , Chen N , et al. Synergistic silencing by promoter methylation and reduced AP-2 alpha transactivation of the proapoptotic HRK gene confers apoptosis resistance and enhanced tumor growth[J]. Am J Pathol, 2013, 182 (1): 84- 95.
doi: 10.1016/j.ajpath.2012.09.018
17 Capper D , Jones DTW , Sill M , et al. DNA methylation-based classification of central nervous system tumours[J]. Nature, 2018, 555 (7697): 469- 474.
doi: 10.1038/nature26000
18 Zuccato J A , Patil V , Mansouri S , et al. DNA methylation-based prognostic subtypes of chordoma tumors in tissue and plasma[J]. Neuro Oncol, 2022, 24 (3): 442- 454.
doi: 10.1093/neuonc/noab235
19 Sjostrom M , Zhao SG , Levy S , et al. The 5-hydroxymethylcytosine landscape of prostate cancer[J]. Cancer Res, 2022, 82 (21): 3888- 3902.
20 Deng S , Zhang J , Su J , et al. RNA m6A regulates transcription via DNA demethylation and chromatin accessibility[J]. Nat Genet, 2022, 54 (9): 1427- 1437.
doi: 10.1038/s41588-022-01173-1
21 Liu X , Wang J , Boyer J A , et al. Histone H3 proline 16 hydroxylation regulates mammalian gene expression[J]. Nat Genet, 2022, 54 (11): 1721- 1735.
doi: 10.1038/s41588-022-01212-x
22 Li Y , Xia L , Tan K , et al. N(6)-methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2[J]. Nat Genet, 2020, 52 (9): 870- 877.
doi: 10.1038/s41588-020-0677-3
23 Mittal P , Roberts CWM . The SWI/SNF complex in cancer: Biology, biomarkers and therapy[J]. Nat Rev Clin Oncol, 2020, 17 (7): 435- 448.
doi: 10.1038/s41571-020-0357-3
24 Bayona-Feliu A , Barroso S , Munoz S , et al. The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription-replication conflicts[J]. Nat Genet, 2021, 53 (7): 1050- 1063.
doi: 10.1038/s41588-021-00867-2
25 Xiao L , Parolia A , Qiao Y , et al. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer[J]. Nature, 2022, 601 (7893): 434- 439.
doi: 10.1038/s41586-021-04246-z
26 Alberti S , Gladfelter A , Mittag T . Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates[J]. Cell, 2019, 176 (3): 419- 434.
doi: 10.1016/j.cell.2018.12.035
27 Cheng Y , Shen Z , Gao Y , et al. Phase transition and remodeling complex assembly are important for SS18-SSX oncogenic activity in synovial sarcomas[J]. Nat Commun, 2022, 13 (1): 2724.
doi: 10.1038/s41467-022-30447-9
28 Mcbride MJ , Pulice JL , Beird HC , et al. The SS18-SSX fusion oncoprotein Hijacks BAF complex targeting and function to drive synovial sarcoma[J]. Cancer Cell, 2018, 33 (6): 1128- 1141.
doi: 10.1016/j.ccell.2018.05.002
29 Yanchus C , Drucker KL , Kollmeyer TM , et al. A noncoding single-nucleotide polymorphism at 8q24 drives IDH1-mutant glioma formation[J]. Science, 2022, 378 (6615): 68- 78.
doi: 10.1126/science.abj2890
30 Wu S , Bafna V , Chang HY , et al. Extrachromosomal DNA: An emerging hallmark in human cancer[J]. Annu Rev Pathol, 2022, 17, 367- 386.
doi: 10.1146/annurev-pathmechdis-051821-114223
31 Wu S , Turner KM , Nguyen N , et al. Circular ecDNA promotes accessible chromatin and high oncogene expression[J]. Nature, 2019, 575 (7784): 699- 703.
doi: 10.1038/s41586-019-1763-5
32 Morton AR , Dogan-Artun N , Faber Z J , et al. Functional enhancers shape extrachromosomal oncogene amplifications[J]. Cell, 2019, 179 (6): 1330- 1341.
doi: 10.1016/j.cell.2019.10.039
33 Zhang Y , Qian J , Gu C , et al. Alternative splicing and cancer: A systematic review[J]. Signal Transduct Target Ther, 2021, 6 (1): 78.
doi: 10.1038/s41392-021-00486-7
34 Larionova TD , Bastola S , Aksinina TE , et al. Alternative RNA splicing modulates ribosomal composition and determines the spatial phenotype of glioblastoma cells[J]. Nat Cell Biol, 2022, 24 (10): 1541- 1557.
doi: 10.1038/s41556-022-00994-w
35 Pan XY , Su ZZ , Zhong JJ , et al. Regulatory RNAs in the molecular pathology of neoplasia (in Chinese)[J]. Sci Sin Vitae, 2022, 52, 1578- 1602.
doi: 10.1360/SSV-2022-0156
36 Chen X , Gong J , Zeng H , et al. MicroRNA145 targets BNIP3 and suppresses prostate cancer progression[J]. Cancer Res, 2010, 70 (7): 2728- 2738.
doi: 10.1158/0008-5472.CAN-09-3718
37 Su W , Xu M , Chen X , et al. Long noncoding RNA ZEB1-AS1 epigenetically regulates the expressions of ZEB1 and downstream molecules in prostate cancer[J]. Mol Cancer, 2017, 16 (1): 142.
doi: 10.1186/s12943-017-0711-y
38 Zhong J , Xu M , Su Z , et al. A novel promoter-associated non-coding small RNA paGLI1 recruits FUS/P65 to transactivate GLI1 gene expression and promotes infiltrating glioma progression[J]. Cancer Lett, 2022, 530, 68- 84.
doi: 10.1016/j.canlet.2022.01.016ww.cnki.com.cn/Article/CJFDTOTAL-GHCX202201005.htmfailanal.2020.104631
39 Su Z, Zhang M, Luo H, et al. circEZH2E2/E3 is a dual suppressor of miR363/miR708 to promote EZH2 expression and prostate cancer progression[J]. Cancer Sci, 2022, 12 (2022-12-15)[2022-12-30]. https://pubmed.ncbi.nlm.nih.gov/36519785/.
40 Palma M , Lejeune F . Deciphering the molecular mechanism of stop codon readthrough[J]. Biol Rev Camb Philos Soc, 2021, 96 (1): 310- 329.
doi: 10.1111/brv.12657
41 Omachi K , Kai H , Roberge M , et al. NanoLuc reporters identify COL4A5 nonsense mutations susceptible to drug-induced stop codon readthrough[J]. iScience, 2022, 25 (3): 103891.
doi: 10.1016/j.isci.2022.103891
42 Abreu RBV , Gomes TT , Nepomuceno TC , et al. Functional restoration of BRCA1 nonsense mutations by aminoglycoside-induced readthrough[J]. Front Pharmacol, 2022, 13, 935995.
doi: 10.3389/fphar.2022.935995
43 Wang J , Xie GF , He Y , et al. Interfering expression of chimeric transcript SEPT7P2-PSPH promotes cell proliferation in patients with nasopharyngeal carcinoma[J]. J Oncol, 2019, 2019, 1654724.
44 Wang Y , Zou Q , Li F , et al. Identification of the cross-strand chimeric RNAs generated by fusions of bi-directional transcripts[J]. Nat Commun, 2021, 12 (1): 4645.
45 Barbieri I , Kouzarides T . Role of RNA modifications in cancer[J]. Nat Rev Cancer, 2020, 20 (6): 303- 322.
doi: 10.1038/s41568-020-0253-2
46 Nombela P , Miguel-Lopez B , Blanco S . The role of m6A, m5C and Psi RNA modifications in cancer: Novel therapeutic opportunities[J]. Mol Cancer, 2021, 20 (1): 18.
doi: 10.1186/s12943-020-01263-w
47 Flynn RA , Pedram K , Malaker SA , et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells[J]. Cell, 2021, 184 (12): 3109- 3124.
doi: 10.1016/j.cell.2021.04.023
48 Dejea CM , Fathi P , Craig JM , et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria[J]. Science, 2018, 359 (6375): 592- 597.
doi: 10.1126/science.aah3648
49 Garrett WS . Cancer and the microbiota[J]. Science, 2015, 348 (6230): 80- 86.
doi: 10.1126/science.aaa4972
50 Sepich-Poore GD , Zitvogel L , Straussman R , et al. The microbiome and human cancer[J]. Science, 2021, 371 (6536): eabc4552.
doi: 10.1126/science.abc4552
51 Gur C , Ibrahim Y , Isaacson B , et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack[J]. Immunity, 2015, 42 (2): 344- 355.
doi: 10.1016/j.immuni.2015.01.010
52 Vivarelli S , Salemi R , Candido S , et al. Gut microbiota and cancer: From pathogenesis to therapy[J]. Cancers (Basel), 2019, 11 (1): 38.
doi: 10.3390/cancers11010038
53 Metsaniitty M , Hasnat S , Salo T , et al. Oral microbiota: A new frontier in the pathogenesis and management of head and neck cancers[J]. Cancers (Basel), 2021, 14 (1): 46.
doi: 10.3390/cancers14010046
54 Marshall EA , Filho FSL , Sin DD , et al. Distinct bronchial microbiome precedes clinical diagnosis of lung cancer[J]. Mol Cancer, 2022, 21 (1): 68.
doi: 10.1186/s12943-022-01544-6
55 Laniewski P , Ilhan ZE , Herbst-Kralovetz MM . The microbiome and gynaecological cancer development, prevention and therapy[J]. Nat Rev Urol, 2020, 17 (4): 232- 250.
doi: 10.1038/s41585-020-0286-z
56 Nejman D , Livyatan I , Fuks G , et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria[J]. Science, 2020, 368 (6494): 973- 980.
doi: 10.1126/science.aay9189
57 Fu A , Yao B , Dong T , et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer[J]. Cell, 2022, 185 (8): 1356- 1372.
doi: 10.1016/j.cell.2022.02.027
58 Riquelme E , Zhang Y , Zhang L , et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes[J]. Cell, 2019, 178 (4): 795- 806.
doi: 10.1016/j.cell.2019.07.008
59 Narunsky-Haziza L , Sepich-Poore GD , Livyatan I , et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions[J]. Cell, 2022, 185 (20): 3789- 3806.
doi: 10.1016/j.cell.2022.09.005
60 Dohlman AB , Klug J , Mesko M , et al. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors[J]. Cell, 2022, 185 (20): 3807- 3822.
doi: 10.1016/j.cell.2022.09.015
61 Shiao SL , Kershaw KM , Limon JJ , et al. Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy[J]. Cancer Cell, 2021, 39 (9): 1202- 1213.
doi: 10.1016/j.ccell.2021.07.002
62 Jia Q , Chu H , Jin Z , et al. High-throughput single-cell sequencing in cancer research[J]. Signal Transduct Target Ther, 2022, 7 (1): 145.
doi: 10.1038/s41392-022-00990-4
63 Rao A , Barkley D , Franca GS , et al. Exploring tissue architecture using spatial transcriptomics[J]. Nature, 2021, 596 (7871): 211- 220.
doi: 10.1038/s41586-021-03634-9
64 Ji AL , Rubin AJ , Thrane K , et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma[J]. Cell, 2020, 182 (2): 497- 514.
doi: 10.1016/j.cell.2020.05.039
65 Doudna JA . The promise and challenge of therapeutic genome editing[J]. Nature, 2020, 578 (7794): 229- 236.
doi: 10.1038/s41586-020-1978-5
[1] 孙菲,刘建,李思琪,危伊萍,胡文杰,王翠. 种植体黏膜下微生物在健康种植体和种植体周炎中的构成与差异:一项横断面研究[J]. 北京大学学报(医学版), 2023, 55(1): 30-37.
[2] 包文晗,唐雯. 初诊IgA肾病患者的肠道菌群及其与疾病进展因素的相关分析[J]. 北京大学学报(医学版), 2023, 55(1): 124-132.
[3] 张家赫,史佳琪,陈章健,贾光. 基于人消化道微生态体外模拟系统观察纳米二氧化钛对肠道菌群的影响[J]. 北京大学学报(医学版), 2022, 54(3): 468-476.
[4] 帅婷,刘娟,郭艳艳,金婵媛. 敲减长链非编码RNA MIR4697HG抑制骨髓间充质干细胞成脂向分化[J]. 北京大学学报(医学版), 2022, 54(2): 320-326.
[5] 王子靖,李在玲. 有幽门螺杆菌感染家族史儿童胃部菌群的特点[J]. 北京大学学报(医学版), 2021, 53(6): 1115-1121.
[6] 杨飞龙,洪锴,赵国江,刘承,宋一萌,马潞林. 基于长链非编码RNA的生物信息学分析构建膀胱癌预后模型并确定预后生物标志物[J]. 北京大学学报(医学版), 2019, 51(4): 615-622.
[7] 杨伊莹,左晓霞,朱红林,刘思佳. 皮肌炎/多肌炎表观遗传学标志物的研究进展[J]. 北京大学学报(医学版), 2019, 51(2): 374-377.
[8] 孟娟红, 甘业华, 马绪臣. 颞下颌关节骨关节炎发病的分子机制及相关治疗的实验研究[J]. 北京大学学报(医学版), 2013, 45(1): 5-8.
[9] 王先火, 赵秀娟, 邱立华, 王华庆, 王玺, . 肿瘤发生的表观遗传学:进展与临床意义[J]. 北京大学学报(医学版), 2012, 44(5): 701-707.
[10] 邓大君. 表观遗传变异与肿瘤防治研究中的几个常见问题[J]. 北京大学学报(医学版), 2006, 38(6): 571-574.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 书讯[J]. 北京大学学报(医学版), 2007, 39(3): 225 -328 .
[2] 管宏, 赵慧云, 沈磊, 李五岭, 王建华, 王春荣, 徐福. 联合应用重组TPO和G-CSF对骨髓抑制性小鼠外周血小板及白细胞恢复的影响[J]. 北京大学学报(医学版), 2001, 33(2): 181 -182 .
[3] 牟向东, 王广发, 阙呈立, 李桂莲. H3N2型人流行性感冒合并金黄色葡萄球菌败血症及金黄色葡萄球菌肺炎1例[J]. 北京大学学报(医学版), 2007, 39(6): 663 -665 .
[4] 范蓉, 张成飞, 高岩, 李斌斌, 王晶. 核因子-κB受体活化因子配体和骨保护素在慢性根尖周炎病损组织中的表达[J]. 北京大学学报(医学版), 2008, 40(1): 39 -42 .
[5] 徐京杭, 于岩岩, 斯崇文, 陈新月, 韩忠厚, 陈勇, 张文谨, 徐道振, 陈宇萍, 于敏, 席宏丽, 李雪迎. 拉米夫定或干扰素单药治疗及序贯治疗慢性乙型肝炎的随机对照临床研究[J]. 北京大学学报(医学版), 2010, 42(6): 739 -745 .
[6] 钟金晟, 欧阳翔英, 梅芳, 邓旭亮, 曹采方. 多孔β-磷酸三钙/胶原支架与犬牙周膜细胞三维复合体的构建[J]. 北京大学学报(医学版), 2007, 39(5): 507 -510 .
[7] 张奇, 罗国安, 邓英杰. 均匀设计法制备5-氟尿嘧啶脂质体及其稳定性[J]. 北京大学学报(医学版), 2002, 34(1): 64 -67 .
[8] 范少光. 向王志均院士学习[J]. 北京大学学报(医学版), 2000, 32(4): 300 .
[9] 李智岗, 黄景香, 李顺宗, 赵俊京, 时高峰, 梁国庆, 王红光, 韩捧银, 王琦, 谷铁树. 肝转移瘤的血供[J]. 北京大学学报(医学版), 2008, 40(2): 146 -150 .
[10] 冯现竹, 侯平, 朱厉, 于磊, 张宏. 转铁蛋白受体基因多态性与IgA肾病易感性及临床病理表型的相关性[J]. 北京大学学报(医学版), 2008, 40(4): 369 -373 .