北京大学学报(医学版) ›› 2024, Vol. 56 ›› Issue (1): 174-178. doi: 10.19723/j.issn.1671-167X.2024.01.027

• 论著 • 上一篇    下一篇

基于两样本孟德尔随机化的失眠与2型糖尿病关联研究

马雨佳,卢燃藜,周泽宸,李晓怡,闫泽玉,武轶群,陈大方*()   

  1. 北京大学公共卫生学院流行病与卫生统计学系, 北京大学重大疾病流行病学教育部重点实验室, 北京 100191
  • 收稿日期:2021-01-21 出版日期:2024-02-18 发布日期:2024-02-06
  • 通讯作者: 陈大方 E-mail:dafangchen@bjmu.edu.cn
  • 基金资助:
    国家自然科学基金(81872692);国家自然科学基金(82073642)

Association between insomnia and type 2 diabetes: A two-sample Mendelian rando-mization study

Yujia MA,Ranli LU,Zechen ZHOU,Xiaoyi LI,Zeyu YAN,Yiqun WU,Dafang CHEN*()   

  1. Department of Epidemiology and Biostatistics, Peking University School of Public Health; Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing 100191, China
  • Received:2021-01-21 Online:2024-02-18 Published:2024-02-06
  • Contact: Dafang CHEN E-mail:dafangchen@bjmu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(81872692);the National Natural Science Foundation of China(82073642)

RICH HTML

  

摘要:

目的: 为克服观察性研究中的混杂因素和反向因果关系的影响,通过两样本孟德尔随机化法探讨失眠与2型糖尿病之间的关联关系。方法: 在欧洲裔人群最新的全基因组关联研究(genome-wide association study,GWAS)中选择与失眠密切相关的遗传位点作为工具变量。剔除与吸烟、体育活动、饮酒、教育程度、肥胖或2型糖尿病显著相关的位点后,使用逆方差加权评估失眠对2型糖尿病的效应,并采用加权中位数法和MR-Egger回归分析来检验结果的稳健性。通过计算F统计量来检验工具变量的适用性,F统计量大于10认为存在弱工具变量偏倚可能性较小。采用MR-Egger回归进行多效性检验。此外,采用留一法(leave-one-out)进行敏感性分析,以进一步验证结果的稳定性和可靠性。结果: 在全基因组水平上选择了248个与失眠独立相关的单核苷酸多态性(single nucleotide polymorphisms,SNPs)作为候选工具变量集合,基于千人基因组计划对候选工具变量集合进行修剪并剔除潜在的多效SNPs后,共纳入与失眠相关的167个SNPs作为最终的工具变量。本研究中F统计量为39.74,符合孟德尔随机化的相关性假设。逆方差加权法发现失眠与2型糖尿病的发生风险较高,在失眠的人群中发生2型糖尿病的风险是无失眠人群的1.14倍(95%CI:1.09~1.21,P<0.001)。加权中位数法和MR-Egger回归结果支持失眠对2型糖尿病存在正向关联。多效性检验表明结果受多效性影响的可能性较小,敏感性分析支持研究结果的可靠性与稳定性。结论: 失眠是2型糖尿病的危险因素,失眠与2型糖尿病发病存在正向关联,本研究为糖尿病高危人群保持健康的生活方式提供了进一步的理论依据。

关键词: 入睡和睡眠障碍, 糖尿病, 2型, 孟德尔随机化分析

Abstract:

Objective: To explore the robust relationship between insomnia and type 2 diabetes mellitus by two-sample Mendelian randomization analysis to overcome confounding factors and reverse causality in observational studies. Methods: We identified strong, independent single nucleotide polymorphisms (SNPs) of insomnia from the most up to date genome wide association studies (GWAS) within European ancestors and applied them as instrumental variable to GWAS of type 2 diabetes mellitus. After excluding SNPs that were significantly associated with smoking, physical activity, alcohol consumption, educational attainment, obesity, or type 2 diabetes mellitus, we assessed the impact of insomnia on type 2 diabetes mellitus using inverse variance weighting (IVW) method. Weighted median and MR-Egger regression analysis were also conducted to test the robustness of the association. We calculated the F statistic of the selected SNPs to test the applicability of instrumental variable and F statistic over than ten indicated that there was little possibility of bias of weak instrumental variables. We further examined the existence of pleiotropy by testing whether the intercept term in MR-Egger regression was significantly different from zero. In addition, the leave-one-out method was used for sensitivity analysis to verify the stability and reliability of the results. Results: We selected 248 SNPs independently associated with insomnia at the genome-wide level (P<5×10-8) as a preliminary candidate set of instrumental variables. After clumping based on the reference panel from 1000 Genome Project and removing the potential pleiotropic SNPs, a total of 167 SNPs associated with insomnia were included as final instrumental variables. The F statistic of this study was 39. 74, which was in line with the relevance assumption of Mendelian randomization. IVW method showed insomnia was associated with higher risk of type 2 diabetes mellitus that po-pulation with insomnia were 1. 14 times more likely to develop type 2 diabetes mellitus than those without insomnia (95% CI: 1.09-1.21, P<0.001). The weighted median estimator (WME) method and MR-Egger regression showed similar causal effect of insomnia on type 2 diabetes mellitus. And MR-Egger regression also showed that the effect was less likely to be triggered by pleiotropy. Sensitivity analyses produced directionally similar estimates. Conclusion: Insomnia is a risk factor of type 2 diabetes mellitus, which has positively effects on type 2 diabetes mellitus. Our study provides further rationale for indivi-duals at risk for diabetes to keep healthy lifestyle.

Key words: Sleep initiation and maintenance disorders, Diabetes mellitus, type 2, Mendelian rando-mization analysis

中图分类号: 

  • R181.33

表1

失眠与2型糖尿病GWAS研究简要信息"

Phenotypes PubMed ID Cases Controls Number of SNPs Proportion of European ancestors/% Overlap with UK Biobank/%
Insomnia 30804565 109 402 277 131 10 862 567 100 100
Type 2 diabetes mellitus 30297969 74 124 824 006 14 095 785 100 0

表2

失眠与2型糖尿病两样本孟德尔效应估计结果"

Methods Number of SNPs βXY SE OR(95%CI) P
IVW 167 0.135 0.027 1.14 (1.09-1.21) <0.001
WME 167 0.139 0.025 1.15 (1.10-1.21) <0.001
MR-Egger 167 0.238 0.107 1.27 (1.03-1.56) 0.028
1 Ford ES , Cunningham TJ , Giles WH , et al. Trends in insomnia and excessive daytime sleepiness among U.S. adults from 2002 to 2012[J]. Sleep Med, 2015, 16 (3): 372- 378.
doi: 10.1016/j.sleep.2014.12.008
2 Ogilvie RP , Patel SR . The Epidemiology of sleep and diabetes[J]. Curr Diab Rep, 2018, 18 (10): 82.
doi: 10.1007/s11892-018-1055-8
3 Gore M , Brandenburg NA , Dukes E , et al. Pain severity in diabetic peripheral neuropathy is associated with patient functioning, symptom levels of anxiety and depression, and sleep[J]. J Pain Symptom Manage, 2005, 30 (4): 374- 385.
doi: 10.1016/j.jpainsymman.2005.04.009
4 王玉琢, 沈洪兵. 孟德尔随机化研究应用于因果推断的影响因素及其结果解读面临的挑战[J]. 中华流行病学杂志, 2020, 41 (8): 1231- 1236.
doi: 10.3760/cma.j.cn112338-20200521-00749
5 Lawlor DA , Harbord RM , Sterne JC , et al. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology[J]. Stat Med, 2008, 27 (8): 1133- 1163.
doi: 10.1002/sim.3034
6 Katan MB . Apolipoprotein E isoforms, serum cholesterol, and cancer. 1986[J]. Int J Epidemiol, 2004, 33 (1): 9.
doi: 10.1093/ije/dyh312
7 Greenland S . An introduction to instrumental variables for epidemiologists[J]. Int J Epidemiol, 2000, 29 (4): 722- 729.
doi: 10.1093/ije/29.4.722
8 Bowden J , Davey Smith G , Burgess S . Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression[J]. Int J Epidemiol, 2015, 44 (2): 512- 525.
doi: 10.1093/ije/dyv080
9 高雪, 王慧, 王彤. 孟德尔随机化中多效性偏倚校正方法简介[J]. 中华流行病学杂志, 2019, 40 (3): 360- 365.
10 Burgess S , Scott RA , Timpson NJ , et al. Using published data in Mendelian randomization: A blueprint for efficient identification of causal risk factors[J]. Eur J Epidemiol, 2015, 30 (7): 543- 552.
doi: 10.1007/s10654-015-0011-z
11 Hammerschlag AR , Stringer S , De Leeuw CA , et al. Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits[J]. Nature Genet, 2017, 49 (11): 1584- 1592.
doi: 10.1038/ng.3888
12 Mahajan A , Taliun D , Thurner M , et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps[J]. Nature Genet, 2018, 50 (11): 1505- 1513.
doi: 10.1038/s41588-018-0241-6
13 Burgess S , Butterworth A , Thompson SG . Mendelian randomization analysis with multiple genetic variants using summarized data[J]. Genet Epidemiol, 2013, 37 (7): 658- 665.
doi: 10.1002/gepi.21758
14 Jansen PR , Watanabe K , Stringer S , et al. Genome-wide analysis of insomnia in 1 331 010 individuals identifies new risk loci and functional pathways[J]. Nat Genet, 2019, 51 (3): 394- 403.
doi: 10.1038/s41588-018-0333-3
15 Stock J , Yogo M , Wright J . A survey of weak instruments and weak identification in generalized method of moments[J]. J Bus Econ Stat, 2002, 20 (4): 518- 529.
doi: 10.1198/073500102288618658
16 Yuan S , Larsson SC . An atlas on risk factors for type 2 diabetes: A wide-angled Mendelian randomisation study[J]. Diabetologia, 2020, 63 (11): 2359- 2371.
doi: 10.1007/s00125-020-05253-x
17 Cespedes EM , Dudley KA , Sotres-Alvarez D , et al. Joint associations of insomnia and sleep duration with prevalent diabetes: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL)[J]. J Diabetes, 2016, 8 (3): 387- 397.
doi: 10.1111/1753-0407.12308
18 Buxton OM , Pavlova M , Reid EW , et al. Sleep restriction for 1 week reduces insulin sensitivity in healthy men[J]. Diabetes, 2010, 59 (9): 2126- 2133.
doi: 10.2337/db09-0699
19 Leproult R , Deliens G , Gilson M , et al. Beneficial impact of sleep extension on fasting insulin sensitivity in adults with habitual sleep restriction[J]. Sleep, 2015, 38 (5): 707- 715.
doi: 10.5665/sleep.4660
20 Irwin MR , Olmstead R , Carroll JE . Sleep disturbance, sleep duration, and inflammation: A systematic review and meta-analysis of cohort studies and experimental sleep deprivation[J]. Biol Psychiatry, 2016, 80 (1): 40- 52.
doi: 10.1016/j.biopsych.2015.05.014
21 Donath MY , Dinarello CA , Mandrup-Poulsen T . Targeting innate immune mediators in type 1 and type 2 diabetes[J]. Nat Rev Immunol, 2019, 19 (12): 734- 746.
doi: 10.1038/s41577-019-0213-9
22 Mcmullan CJ , Schernhammer ES , Rimm EB , et al. Melatonin secretion and the incidence of type 2 diabetes[J]. JAMA, 2013, 309 (13): 1388- 1396.
doi: 10.1001/jama.2013.2710
23 Bouatia-Naji N , Bonnefond A , Cavalcanti-Proença C , et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk[J]. Nat Genet, 2009, 41 (1): 89- 94.
doi: 10.1038/ng.277
24 Garaulet M , Gómez-Abellán P , Rubio-Sastre P , et al. Common type 2 diabetes risk variant in MTNR1B worsens the deleterious effect of melatonin on glucose tolerance in humans[J]. Metabolism, 2015, 64 (12): 1650- 1657.
doi: 10.1016/j.metabol.2015.08.003
25 Burgess S , Bowden J , Fall T , et al. Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants[J]. Epidemiology, 2017, 28 (1): 30- 42.
doi: 10.1097/EDE.0000000000000559
[1] 王梦莹,李文咏,周仁,王斯悦,刘冬静,郑鸿尘,李静,李楠,周治波,朱洪平,吴涛,胡永华. WNT代谢通路相关基因与中国人群非综合征型唇腭裂发病风险的交互作用[J]. 北京大学学报(医学版), 2020, 52(5): 815-820.
[2] 袁园,王苹,吴雅慧,叶晓茜,黄尚志,石冰,王科,王竹青,刘冬静,王子凡,. 中国人群细胞黏附相关基因多态性与非综合征型唇腭裂的关联研究[J]. 北京大学学报(医学版), 2016, 48(3): 403-408.
[3] 王竹青, 王苹, 吴雅慧, 叶晓茜, 黄尚志, 石冰, 王科, 袁园, 刘冬静, 吴涛, 王红, Terri H. Beaty. 中国人群转化生长因子β信号通路上的基因多态性与非综合征型唇腭裂的关联研究[J]. 北京大学学报(医学版), 2015, 47(3): 384-389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 钟金晟, 欧阳翔英, 梅芳, 邓旭亮, 曹采方. 多孔β-磷酸三钙/胶原支架与犬牙周膜细胞三维复合体的构建[J]. 北京大学学报(医学版), 2007, 39(5): 507 -510 .
[2] 张奇, 罗国安, 邓英杰. 均匀设计法制备5-氟尿嘧啶脂质体及其稳定性[J]. 北京大学学报(医学版), 2002, 34(1): 64 -67 .
[3] 管宏, 赵慧云, 沈磊, 李五岭, 王建华, 王春荣, 徐福. 联合应用重组TPO和G-CSF对骨髓抑制性小鼠外周血小板及白细胞恢复的影响[J]. 北京大学学报(医学版), 2001, 33(2): 181 -182 .
[4] 李云芳, 张幼怡, 侯嵘, 董尔丹, 韩启德. 质粒转染对HEK293和DDT1-MF2细胞天然β2-肾上腺素受体表达的影响[J]. 北京大学学报(医学版), 2001, 33(5): 457 -461 .
[5] 柯杨. 乳头状瘤病毒与人类肿瘤[J]. 北京大学学报(医学版), 2002, 34(5): 599 -603 .
[6] 赵建新, 周良, 万远廉. 经十二指肠逆行放置支架治疗恶性幽门梗阻2例[J]. 北京大学学报(医学版), 2002, 34(6): 737 -738 .
[7] 洪涛, 霍勇. COURAGE试验后稳定型心绞痛的治疗策略思考[J]. 北京大学学报(医学版), 2007, 39(6): 562 -564 .
[8] 牟向东, 王广发, 阙呈立, 李桂莲. H3N2型人流行性感冒合并金黄色葡萄球菌败血症及金黄色葡萄球菌肺炎1例[J]. 北京大学学报(医学版), 2007, 39(6): 663 -665 .
[9] 李智岗, 黄景香, 李顺宗, 赵俊京, 时高峰, 梁国庆, 王红光, 韩捧银, 王琦, 谷铁树. 肝转移瘤的血供[J]. 北京大学学报(医学版), 2008, 40(2): 146 -150 .
[10] 冯现竹, 侯平, 朱厉, 于磊, 张宏. 转铁蛋白受体基因多态性与IgA肾病易感性及临床病理表型的相关性[J]. 北京大学学报(医学版), 2008, 40(4): 369 -373 .