北京大学学报(医学版) ›› 2025, Vol. 57 ›› Issue (3): 562-568. doi: 10.19723/j.issn.1671-167X.2025.03.021

• 论著 • 上一篇    下一篇

99mTc-DTPA经脑细胞外间隙给药后的动态分布及消除规律

邹晶1,2,3, 高天姿1,3, 汪洋1,3, 任蒙蒙1,2,3, 刘东阳4, 龙仁1,2,3, 成雨萌1,3,5, 刘萌6, 徐正仁7, 谢肇恒1,3, 吕鹏宇8, 袁兰1,2,3,*(), 韩鸿宾1,3,5,*()   

  1. 1. 北京大学医学部医学技术研究院, 北京 100191
    2. 北京大学药学院化学生物学系, 北京 100191
    3. 北京市磁共振成像设备与技术重点实验室, 北京 100191
    4. 北京大学第三医院药物临床试验机构, 北京 100191
    5. 北京大学第三医院放射科, 北京 100191
    6. 北京大学第一医院核医学科, 北京 100034
    7. 北京大学药学院天然药物学系, 北京 100191
    8. 北京大学工学院力学与工程科学系, 北京 100871
  • 收稿日期:2022-05-10 出版日期:2025-06-18 发布日期:2025-06-13
  • 通讯作者: 袁兰, 韩鸿宾
  • 基金资助:
    国家重大科研仪器研制项目(61827808); 国家自然科学数学天元基金(12126601); 北京市自然科学基金(Z210007)

Dynamic distribution and clearance of 99mTc-DTPA in brain extracellular space

Jing ZOU1,2,3, Tianzi GAO1,3, Yang WANG1,3, Mengmeng REN1,2,3, Dongyang LIU4, Ren LONG1,2,3, Yumeng CHENG1,3,5, Meng LIU6, Zhengren XU7, Zhaoheng XIE1,3, Pengyu LV8, Lan YUAN1,2,3,*(), Hongbin HAN1,3,5,*()   

  1. 1. Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
    2. Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
    3. Beijing Key Lab of Magnetic Resonance Imaging Device and Technique, Beijing 100191, China
    4. Peking University Third Hospital Drug Clinical Trial Institute, Beijing 100191, China
    5. Department of Radiology, Peking University Third Hospital, Beijing 100191, China
    6. Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
    7. Department of Natural Medicines, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
    8. Department of Mechanics and Engineering Science, Peking University School of Engineering, Beijing 100871, China
  • Received:2022-05-10 Online:2025-06-18 Published:2025-06-13
  • Contact: Lan YUAN, Hongbin HAN
  • Supported by:
    the National Major Scientific Research Instrument Development Project(61827808); the National Natural Science Mathematics Tianyuan Foundation(12126601); the Beijing Natural Science Foundation(Z210007)

RICH HTML

  

摘要:

目的: 探索 99mTc-二乙基三胺五乙酸(99mTc-DTPA)经脑细胞外间隙(extracellular space, ECS)途径在不同脑区给药后,正常成年大鼠脑内及全身的药物动态分布及消除规律。方法: 使用鼠脑立体定位仪将SD大鼠固定,将体积为2 μL、放射性活度为3.7 MBq (100 μCi) 的 99mTc-DTPA分别注入大鼠的尾状核区和丘脑区,使用小动物单光子发射型计算机断层扫描/计算机断层扫描(single photon emission computed tomography/computed tomography, SPECT/CT)在不同时间显像,连续观察示踪剂的动态分布和消除规律。生物体内分布实验是在大鼠丘脑区和尾状核区注入 99mTc-DTPA,4 h后处死大鼠,收集血液、尿液,取大脑、小脑、心、肝、脾、肺、肾,称重后用γ计数器测定其放射性强度。结果: 99mTc-DTPA经脑ECS途径给药后,放射性分布浓聚于脑、肾和膀胱,左侧尾状核区给药的示踪剂优先向右侧小脑引流,右侧尾状核区给药的示踪剂优先向左侧小脑引流,尾状核区给药存在“对侧小脑优势引流”现象,而丘脑区给药后会优先向同侧小脑引流。给药4 h后,尿液、小脑和大脑出现高放射性摄取,其次是血液和肾,心、肝、脾、肺的放射性摄取值均较低,主要经泌尿系统排泄。结论: 经脑ECS途径给药是一种极具前景的给药方法,但不同脑区经该途径给药后的动态分布与消除规律存在明显差异,本研究进一步拓展了“脑分区”的内容与意义,也为未来经脑ECS途径给药进行脑病治疗和新药研发提供了理论基础。

关键词: 99mTc-DTPA, 脑, 细胞外间隙, 组织间液, 组织分布

Abstract:

Objective: To explore the distribution and clearance of 99mTc labeled diethylenetriamine pentaacetic acid (99mTc-DTPA) in different brain regions of adult rats after administration through brain extracellular space (ECS) pathway. Methods: After the injection of a volume of 2 μL and radioactive activity of about 3.7 MBq (100 μCi) of 99mTc-DTPA into the caudate nucleus and thalamus of SD rats through stereotactic positioning of rat brain, the single photon emission computed tomography/computed tomography (SPECT/CT) for small animals was used for imaging at different time points, and the dyna-mic distribution and clearance of the tracer in the whole body were observed continuously. The SD rats were injected with 99mTc-DTPA into thalamus and caudate nucleus respectively for biological distribution in vivo. They were put to death 4 h later. Their blood and urine were collected. The brain, cerebellum, heart, liver, spleen, lung, and kidney were taken and weighed by γ counter to measure its radioactivity. Results: SPECT/CT imaging results showed that after 99mTc-DTPA was administered through brain ECS, the radioactivity was concentrated in the brain, kidney and bladder. The tracer administered to the left caudate nucleus was preferentially drained to the right cerebellum, while the tracer administered to the right caudate nucleus was preferentially drained to the left cerebellum. There was a phenomenon of “contralateral cerebellar dominant drainage” in the caudate nucleus. The thalamic area preferentially drained to the ipsilateral cerebellum after administration. Four hours after administration via ECS, high radioactive uptake appeared in urine, cerebellum and brain, followed by blood and kidney. The radioactive uptake values of heart, liver, spleen and lung were low, which were mainly excreted through urinary system. Conclusion: Intracerebral ECS administration is a promising method of administration, but there are significant differences in distribution and clearance in different brain regions. This study further expands the content and significance of “ECS regions”, and also provides an important theoretical foundation for the treatment of encephalopathy and the research of new drugs through brain ECS in the future.

Key words: 99mTc-DTPA, Brain, Extracellular space, Interstitial fluid, Tissue distribution

中图分类号: 

  • R817.4

图1

正常SD大鼠左侧尾状核注射99mTc-DTPA的SPECT/CT图像"

图2

正常SD大鼠右侧尾状核注射99mTc-DTPA的SPECT/CT图像"

图3

正常SD大鼠左侧丘脑区注射 99mTc-DTPA的SPECT/CT图像"

图4

正常SD大鼠右侧丘脑注射 99mTc-DTPA的SPECT/CT图像"

表1

正常SD大鼠分别在右侧尾状核和右侧丘脑注入99mTc-DTPA 4 h后的体内分布(n=5)"

Organs and tissues Radioactive uptake value/(%ID/g), $\bar x \pm s$
R-Cn R-Tha
Olfactory bulb 45.66±13.48 31.73±6.45
Cerebellum 26.06±16.26 73.70±25.17
Brain-R 159.85±85.37 221.93±54.04
Brain-L 28.60±13.56 49.73±16.64
Heart 0.44±0.30 1.20±0.52
Liver 0.68±0.68 0.87±0.39
Spleen 0.21±0.08 0.87±0.47
Lung-R 0.84±0.40 2.42±0.94
Lung-L 0.60±0.34 2.15±0.87
Kidney-R 2.98±1.55 5.30±1.50
Kidney-L 2.74±1.25 5.61±1.56
Blood 2.49±0.88 4.83±1.83
Urine 102.32±25.61 312.55±48.10
1
Abbott NJ , Patabendige AA , Dolman DE , et al. Structure and function of the blood-brain barrier[J]. Neurobiol Dis, 2010, 37 (1): 13- 25.

doi: 10.1016/j.nbd.2009.07.030
2
Lonser RR . Imaging of convective drug delivery in the nervous system[J]. Neurosurg Clin N Am, 2017, 28 (4): 615- 622.

doi: 10.1016/j.nec.2017.05.012
3
Zhan W , Alamer M , Xu XY . Computational modelling of drug delivery to solid tumour: Understanding the interplay between chemotherapeutics and biological system for optimised delivery systems[J]. Adv Drug Deliv Rev, 2018, 132, 81- 103.

doi: 10.1016/j.addr.2018.07.013
4
Mehta AM , Sonabend AM , Bruce JN . Convection-enhanced delivery[J]. Neurotherapeutics, 2017, 14 (2): 358- 371.

doi: 10.1007/s13311-017-0520-4
5
Saito R , Tominaga T . Convection-enhanced delivery of therapeutics for malignant gliomas[J]. Neurol Med Chir (Tokyo), 2017, 57 (1): 8- 16.

doi: 10.2176/nmc.ra.2016-0071
6
Zangen A , Hyodo K . Transcranial magnetic stimulation induces increases in extracellular levels of dopamine and glutamate in the nucleus accumbens[J]. Neuroreport, 2002, 13 (18): 2401- 2405.

doi: 10.1097/00001756-200212200-00005
7
Lei Y , Han H , Yuan F , et al. The brain interstitial system: Anatomy, modeling, in vivo measurement, and applications[J]. Prog Neurobiol, 2017, 157, 230- 246.

doi: 10.1016/j.pneurobio.2015.12.007
8
赵越, 李昀倩, 李怀业, 等. 荧光及磁示踪法观测脑组织液的引流分区特征[J]. 北京大学学报(医学版), 2017, 49 (2): 303- 309.
9
Zuo L , Li K , Han H . Comparative analysis by magnetic resonance imaging of extracellular space diffusion and interstitial fluid flow in the rat striatum and thalamus[J]. Appl Magn Reson, 2015, 46 (6): 623- 632.

doi: 10.1007/s00723-015-0670-7
10
Deitmer JW , Rose CR . pH regulation and proton signalling by glial cells[J]. Prog Neurobiol, 1996, 48 (2): 73- 103.

doi: 10.1016/0301-0082(95)00039-9
11
Fuxe K , Dahlström AB , Jonsson G , et al. The discovery of central monoamine neurons gave volume transmission to the wired brain[J]. Prog Neurobiol, 2010, 90 (2): 82- 100.

doi: 10.1016/j.pneurobio.2009.10.012
12
Iliff JJ , Wang M , Liao Y , et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta[J]. Sci Transl Med, 2012, 4 (147): 147ra111.
13
Wang A , Wang R , Cui D , et al. The drainage of interstitial fluid in the deep brain is controlled by the integrity of myelination[J]. Aging Dis, 2019, 10 (5): 937- 948.

doi: 10.14336/AD.2018.1206
14
Hou J , Wang W , Quan X , et al. Quantitative visualization of dynamic tracer transportation in the extracellular space of deep brain regions using tracer-based magnetic resonance imaging[J]. Med Sci Monit, 2017, 23, 4260- 4268.

doi: 10.12659/MSM.903010
15
Teng Z , Wang A , Wang P , et al. The effect of aquaporin-4 knockout on interstitial fluid flow and the structure of the extracellular space in the deep brain[J]. Aging Dis, 2018, 9 (5): 808- 816.

doi: 10.14336/AD.2017.1115
16
Guan X , Wang W , Wang A , et al. Brain interstitial fluid drainage alterations in glioma-bearing rats[J]. Aging and Disease, 2018, 9 (2): 228- 234.

doi: 10.14336/AD.2017.0415
17
李艳玲, 彭本君. 99mTc-DTPA肾动态显像对多囊肾病患者诊断价值分析[J]. 泰山医学院学报, 2019, 40 (10): 752- 753.
[1] 钟鹏, 胡晓丹, 王振洲. 大鼠脑创伤半暗带光学相干断层血管造影及微血管密度定量[J]. 北京大学学报(医学版), 2025, 57(2): 262-266.
[2] 李晋娜,许丽娜,李敏,宋怡,张静,贾龙斌. 急性脑梗死患者血清BDNF、IL-18、hs-CRP水平与血管性认知障碍的相关性[J]. 北京大学学报(医学版), 2024, 56(4): 708-714.
[3] 龙仁, 毛鑫, 高天姿, 解倩, 谈瀚博, 李子寅, 韩鸿宾, 袁兰. 熊果酸改善精神分裂症小鼠脱髓鞘和脑组织间液引流紊乱[J]. 北京大学学报(医学版), 2024, 56(3): 487-494.
[4] 刘颖,霍然,徐慧敏,王筝,王涛,袁慧书. 磁共振血管壁成像评估颈动脉中重度狭窄患者斑块特征与脑血流灌注的相关性[J]. 北京大学学报(医学版), 2023, 55(4): 646-651.
[5] 范常锋,黄亚平,李霞,陈芸,李真,乔淑冬. 以发作性体位性视物双影为前期症状的后循环卒中1例[J]. 北京大学学报(医学版), 2023, 55(4): 762-765.
[6] 于欢,杨若彤,王斯悦,吴俊慧,王梦莹,秦雪英,吴涛,陈大方,武轶群,胡永华. 2型糖尿病患者使用二甲双胍与缺血性脑卒中发病风险的队列研究[J]. 北京大学学报(医学版), 2023, 55(3): 456-464.
[7] 叶珊,金萍萍,张楠,邬海博,石林,赵强,杨坤,袁慧书,樊东升. 肌萎缩侧索硬化患者认知功能改变与脑皮层厚度分析[J]. 北京大学学报(医学版), 2022, 54(6): 1158-1162.
[8] 陈素华,杨军,陈新,杨辰龙,孙建军,林国中,于涛,杨欣,韩芸峰,吴超,司雨,马凯明. 大型、巨大型上矢状窦中后1/3侵犯颅外复发脑膜瘤的手术治疗[J]. 北京大学学报(医学版), 2022, 54(5): 1006-1012.
[9] 陆林,刘晓星,袁凯. 中国脑科学计划进展[J]. 北京大学学报(医学版), 2022, 54(5): 791-795.
[10] 杜燕燕,王健,贺兰,季丽娜,徐樨巍. 儿童川崎病合并轻微脑炎/脑病伴可逆性胼胝体压部病变综合征1例并文献复习[J]. 北京大学学报(医学版), 2022, 54(4): 756-761.
[11] 杨若彤,王梦莹,李春男,于欢,王小文,吴俊慧,王斯悦,王伽婷,陈大方,吴涛,胡永华. 缺血性脑卒中全基因组关联研究提示阳性基因位点与睡眠行为的交互作用[J]. 北京大学学报(医学版), 2022, 54(3): 412-420.
[12] 孟广艳,张筠肖,张渝昕,刘燕鹰. IgG4相关性疾病中枢神经系统受累的临床特点分析[J]. 北京大学学报(医学版), 2021, 53(6): 1043-1048.
[13] 任国勇,吴雪梅,李颖,李婕妤,孙伟平,黄一宁. 大血管闭塞性脑卒中亚急性期磁敏感血管征的表现[J]. 北京大学学报(医学版), 2021, 53(6): 1133-1138.
[14] 白鹏,王涛,周阳,陶立元,李刚,李正迁,郭向阳. 不同转流标准对颈动脉内膜切除术后脑梗死的影响[J]. 北京大学学报(医学版), 2021, 53(6): 1144-1151.
[15] 苗欣,黄红拾,胡晓青,时会娟,任爽,敖英芳. 膝关节前交叉韧带断裂后单腿位置觉测试时脑电功率谱的变化特征[J]. 北京大学学报(医学版), 2021, 53(5): 871-876.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!