北京大学学报(医学版) ›› 2025, Vol. 57 ›› Issue (3): 554-561. doi: 10.19723/j.issn.1671-167X.2025.03.020

• 论著 • 上一篇    下一篇

视屏作业人员视疲劳及干眼的流行病学调查

杨龙傲1, 金旭1, 黄文初1, 何丽华1,*(), 陈娟2,3,*()   

  1. 1. 北京大学公共卫生学院劳动卫生与环境卫生学系, 北京 100191
    2. 北京大学公共卫生学院卫生政策与管理学系, 北京 100191
    3. 北大医学-正大光明视觉健康联合实验室, 北京 100191
  • 收稿日期:2025-02-19 出版日期:2025-06-18 发布日期:2025-06-13
  • 通讯作者: 何丽华, 陈娟
  • 基金资助:
    北大医学-正大光明视觉健康联合实验室基金

Epidemiological investigation of asthenopia and dry eye among visual display terminal workers

Longao YANG1, Xu JIN1, Wenchu HUANG1, Lihua HE1,*(), Juan CHEN2,3,*()   

  1. 1. Department of Occupational & Environmental Health Sciences, Peking University School of Public Health, Beijing 100191, China
    2. Department of Health Policy and Management, Peking University School of Public Health, Beijing 100191, China
    3. Peking University Medicine-Zhengda Guangming Joint Laboratory for Visual Health, Beijing 100191, China
  • Received:2025-02-19 Online:2025-06-18 Published:2025-06-13
  • Contact: Lihua HE, Juan CHEN
  • Supported by:
    the Peking University Medicine-Zhengda Guangming Joint Laboratory for Visual Health Funds

RICH HTML

  

摘要:

目的: 调查视疲劳及干眼的流行情况, 并进一步探索可能存在的职业有害因素, 为视疲劳及干眼的防控提供理论依据。方法: 选择的调查对象为银行、高校、政府部门等工作单位的视屏作业人员, 利用课题组自行研制的电子问卷进行人群横断面调查, 收集一般情况、工作情况、工作环境、眼视光健康、工效学条件等信息。根据是否罹患视疲劳和干眼对调查对象进行分析, 通过t检验、卡方检验筛选视疲劳和干眼的相关因素, 之后进行二元Logistic回归分析, 确定视屏作业人员视疲劳及干眼的危险因素。结果: 视屏作业人员视疲劳的总体患病率为52.5%(235/448), 干眼的总体患病率为36.8%(165/448)。视疲劳及干眼的患病率在性别、各年龄组、各视屏作业工龄组间差异无统计学意义; 低体重者的干眼患病率最高(42.9%), 其次分别为正常体重(40.6%)、超重(28.0%)和肥胖(17.4%)者, 不同体重指数(body mass index, BMI)组别的患病率差异有统计学意义(χ2=9.505, P=0.023);视疲劳的患病率在证券工作人员中最低(22.6%), 在企业(59.5%)和其他工作单位(68.8%)人员中较高, 在不同工作单位类型间视疲劳的患病率差异有统计学意义(χ2=14.832, P=0.022)。Logistic回归分析结果显示, 较长的视屏作业工龄(OR=1.006, P < 0.001)、较长的工作外电子设备使用时长(OR=1.002, P=0.032)、显示器亮度过高(OR=2.875, P=0.022)、工作时存在眩光(OR=1.500, P=0.038)、较大的工作环境噪声(OR=1.586, P=0.012)、罹患工作相关肌肉骨骼疾患(work-related musculoskeletal disorders, WMSDs)(OR=4.366, P < 0.001)等为视疲劳的独立危险因素; 佩戴框架眼镜(OR=0.452, P=0.037)为视疲劳的独立保护因素。工作时存在眩光(OR=2.198, P < 0.001)和罹患WMSDs(OR=2.226, P=0.001)为干眼的独立危险因素, 超重(OR=0.448, P=0.006)和肥胖(OR=0.228, P=0.032)为干眼的独立保护因素。结论: 视屏作业人员视疲劳及干眼的患病率较高, 多种危险因素与之相关, 防控时应注重合理进行工间休息, 控制眩光, 加强视觉健康培训与宣传。

关键词: 视觉显示终端, 视疲劳, 干眼综合征, 危险因素

Abstract:

Objective: To investigate the prevalence of asthenopia and dry eye, and to further explore the potential occupational hazard factors, so as to provide a theoretical basis for their prevention and control. Methods: A cross-sectional survey was conducted on the selected respondents. For visual display terminal (VDT) workers in employing organizations such as banks, colleges, and government departments, an online questionnaire independently developed by the research group was used for population surveys. Information including general information, work-related situations, work environment, visual health, and ergonomic factors was collected. The respondents were analyzed according to whether they suffered from asthenopia and dry eye. Relevant factors of asthenopia and dry eye were screened through t-test and Chi-square test. Subsequently, binary Logistic regression analysis was carried out to determine the risk factors of asthenopia and dry eye among the VDT workers. Results: The overall prevalence of asthenopia was 52.5% (235/448) and dry eye was 36.8% (165/448). There were no significant diffe-rences in the prevalence of asthenopia and dry eye among different genders, age groups, and groups of length of service in VDT work. However, the highest prevalence of dry eye was observed in underweight individuals (42.9%), followed by normal weight (40.6%), overweight (28.0%), and obese indivi-duals (17.4%). There was a significant difference in the prevalence of dry eye among different body mass index (BMI) groups (χ2=9.505, P=0.023). The lowest prevalence of asthenopia was observed among securities industry employees (22.6%), while higher rates were found in employees in companies (59.5%) and other employing organizations (68.8%). A significant difference in the prevalence of asthenopia among different employing organizations (χ2=14.832, P=0.022). The result of Logistic regression showed that a longer length of service in VDT work (OR=1.006, P < 0.001), a longer duration of VDT after working hours (OR=1.002, P=0.032), a too-bright monitor (OR=2.875, P=0.022), glare during work (OR=1.500, P=0.038), a louder noise in work environment (OR=1.586, P=0.012), work-related musculoskeletal disorders (WMSDs) (OR=4.366, P < 0.001) and other factors were independent risk factors of asthenopia, while wearing frame glasses (OR=0.452, P=0.037) was an independent protective factor. Glare during work (OR=2.198, P < 0.001), WMSDs (OR=2.226, P=0.001) and other factors were independent risk factors of dry eye, while overweight (OR=0.448, P=0.006), obesity (OR=0.228, P=0.032) were independent protective factors of dry eye. Conclusion: The prevalence of asthenopia and dry eye among VDT workers is relatively high, and it is associated with multiple risk factors. During prevention and control, attention should be paid to taking reasonable breaks during work, controlling glare, and strengthening visual health training and promotion.

Key words: Visual display terminal, Asthenopia, Dry eye syndromes, Risk factor

中图分类号: 

  • R181.3

表1

调查对象的一般情况(n=448)"

Variables n Proportion/%
Gender
  Male 217 48.4
  Female 231 51.6
Age group/years
   < 20 6 1.3
  20- 210 46.9
  30- 113 25.2
  40- 78 17.4
  ≥50 41 9.2
Career
  Securities 31 6.9
  Bank 14 3.1
  Hospital 115 25.7
  College/Research institution 101 22.5
  Public/Government institution 87 19.4
  Company 84 18.8
  Other 16 3.6
BMI
  Underweight 42 9.4
  Normal weight 283 63.2
  Overweight 100 22.3
  Obesity 23 5.1
Education
  High school and below 17 3.8
  Junior college 58 13.0
  College 286 63.8
  Postgraduate and above 87 19.4
Monthly income/yuan
  ≤5 000 118 26.3
  5 001-7 000 98 21.9
  7 001-8 000 50 11.2
  8 001-10 000 52 11.6
  >10 000 130 29.0

表2

不同人口学特征下视疲劳及干眼的患病率"

Demographic factors Total Asthenopia, n (%) Dry eye, n (%)
Gender
  Male 217 104 (47.9) 84 (38.7)
  Female 231 131 (56.7) 81 (35.1)
  χ2 3.461 0.639
  P value 0.063 0.424
Age group/years
   < 20 6 5 (83.3) 3 (50.0)
  20- 210 104 (49.5) 87 (41.4)
  30- 113 57 (50.4) 34 (30.1)
  40- 78 45 (57.7) 26 (33.3)
  ≥50 41 24 (58.5) 15 (36.6)
  χ2 4.667 4.974
  P value 0.323 0.290
BMI
  Underweight 42 20 (47.6) 18 (42.9)
  Normal weight 283 150 (53.0) 115 (40.6)
  Overweight 100 54 (54.0) 28 (28.0)
  Obesity 23 11 (47.8) 4 (17.4)
  χ2 0.721 9.505
  P value 0.868 0.023*
Types of employing organizations
  Securities 31 7 (22.6) 6 (19.4)
  Bank 14 7 (50.0) 7 (50.0)
  Hospital 115 59 (51.3) 42 (36.5)
  College/Research institution 101 53 (52.5) 45 (44.6)
  Public/Government institution 87 48 (55.2) 30 (34.5)
  Company 84 50 (59.5) 30 (35.7)
  Other 16 11 (68.8) 5 (31.3)
  χ2 14.832 8.173
  P value 0.022* 0.226
Length of service in VDT work/years
   < 5 234 116 (49.6) 73 (31.2)
  5- 69 33 (47.8) 18 (26.1)
  10- 101 60 (59.4) 29 (28.7)
  ≥20 44 26 (59.1) 17 (38.6)
  χ2 4.106 2.209
  P value 0.250 0.530

表3

视疲劳的危险因素"

Variables B SE Wald χ2 P value OR (95%CI)
Types of employing organizations
  Securities Reference
  Bank 2.621 0.941 7.758 0.005 13.751 (2.174-86.964)
  Hospital 1.457 0.603 5.844 0.016 4.291 (1.317-13.980)
  College/Research institution 1.211 0.608 3.972 0.046 3.356 (1.020-11.042)
  Public/Government institution 1.899 0.635 8.947 0.003 6.682 (1.925-23.197)
  Company 2.318 0.644 12.941 < 0.001 10.158 (2.873-35.923)
  Other 2.648 0.878 9.100 0.003 14.119 (2.528-78.860)
Length of service in VDT work (by month) 0.006 0.001 13.617 < 0.001 1.006 (1.003-1.008)
Duration of VDT after working hours (by minute) 0.002 0.001 4.605 0.032 1.002 (1.000-1.004)
Monitor brightness
  Suitable Reference
  Too bright 1.056 0.461 5.250 0.022 2.875 (1.165-7.094)
Frequent head-down postures (over 4 times per minute) 0.386 0.111 12.175 < 0.001 1.471 (1.184-1.828)
Completion of conflicting tasks 0.297 0.125 5.657 0.017 1.346 (1.054-1.721)
Utilizing special talents -0.256 0.129 3.962 0.047 0.774 (0.602-0.996)
Glare 0.406 0.195 4.307 0.038 1.500 (1.023-2.200)
Noise 0.461 0.184 6.287 0.012 1.586 (1.106-2.275)
Myopia 1.413 0.388 13.268 < 0.001 4.107 (1.920-8.783)
Astigmatism 0.686 0.291 5.547 0.019 1.986 (1.122-3.517)
Glasses
  No glasses Reference
  Frame glasses -0.794 0.380 4.364 0.037 0.452 (0.215-0.952)
Eye drops using 1.566 0.339 21.322 < 0.001 4.787 (2.463-9.306)
WMSDs 1.474 0.248 35.360 < 0.001 4.366 (2.686-7.098)

表4

干眼的危险因素"

Variables B SE Wald χ2 P value OR (95%CI)
BMI
  Normal weight Reference
  Overweight -0.804 0.291 7.615 0.006 0.448 (0.253-0.792)
  Obesity -1.479 0.688 4.616 0.032 0.228 (0.059-0.878)
Smoking
  No smoking Reference
  Quitting smoking 1.314 0.428 9.419 0.002 3.722 (1.608-8.614)
Monthly income -0.151 0.076 3.996 0.046 0.860 (0.741-0.997)
Duration of computer during working hours (by minute) -0.005 0.001 16.662 < 0.001 0.995 (0.993-0.998)
Work shifts
  Day shifts Reference
  Swing shifts 1.852 0.686 7.293 0.007 6.370 (1.662-24.421)
Frequent head-turning postures (over 4 times per minute) 0.318 0.114 7.804 0.005 1.374 (1.100-1.718)
Glare 0.787 0.178 19.553 < 0.001 2.198 (1.550-3.115)
Eye drops using 0.645 0.295 4.765 0.029 1.905 (1.068-3.399)
WMSDs 0.800 0.237 11.417 0.001 2.226 (1.400-3.542)
1
Artime-Ríos E , Suárez-Sánchez A , Sánchez-Lasheras F , et al. Computer vision syndrome in healthcare workers using video display terminals: An exploration of the risk factors[J]. J Adv Nurs, 2022, 78 (7): 2095- 2110.

doi: 10.1111/jan.15140
2
Das A , Shah S , Adhikari TB , et al. Computer vision syndrome, musculoskeletal, and stress-related problems among visual display terminal users in Nepal[J]. PLoS One, 2022, 17 (7): e0268356.

doi: 10.1371/journal.pone.0268356
3
Parihar JK , Jain VK , Chaturvedi P , et al. Computer and visual display terminals (VDT) vision syndrome (CVDTS)[J]. Med J Armed Forces India, 2016, 72 (3): 270- 276.

doi: 10.1016/j.mjafi.2016.03.016
4
中华医学会眼科学分会眼视光学组. 视疲劳诊疗专家共识(2014年)[J]. 中华眼视光学与视觉科学杂志, 2014, 16 (7): 385- 387.

doi: 10.3760/cma.j.issn.1674-845X.2014.07.001
5
Seguí Mdel M , Cabrero-García J , Crespo A , et al. A reliable and valid questionnaire was developed to measure computer vision syndrome at the workplace[J]. J Clin Epidemiol, 2015, 68 (6): 662- 673.

doi: 10.1016/j.jclinepi.2015.01.015
6
杨培增, 范先群. 眼科学[M]. 九版 北京: 人民卫生出版社, 2018.
7
李炳钦, 张红梅, 王志洋, 等. 天津某高校新生计算机视觉综合征现状及影响因素[J]. 中国学校卫生, 2023, 44 (6): 850- 853.
8
黄滟. 某市高中学生视频显示终端综合征的现状及影响因素分析[D]. 成都: 成都医学院, 2022.
9
董伟华, 何章彪, 帖红艳, 等. 大学生使用视频终端的用眼行为习惯的研究[J]. 济源职业技术学院学报, 2023, 22 (2): 37- 42.
10
刘乐, 周义生, 况杰, 等. 高校医学生视频显示终端综合征与抑郁症状的关系[J]. 中国学校卫生, 2022, 43 (5): 743- 745.
11
Salinas-Toro D , Cartes C , Segovia C , et al. High frequency of digital eye strain and dry eye disease in teleworkers during the coronavirus disease (2019) pandemic[J]. Int J Occup Saf Ergon, 2022, 28 (3): 1787- 1792.

doi: 10.1080/10803548.2021.1936912
12
张丽, 姜伟, 崔培胜. 视频显示终端作业人员干眼病状况调查及影响因素分析[J]. 中华临床医师杂志(电子版), 2011, 5 (9): 2731- 2734.

doi: 10.3877/cma.j.issn.1674-0785.2011.09.052
13
亚洲干眼协会中国分会, 海峡两岸医药卫生交流协会眼科学专业委员会眼表与泪液病学组, 中国医师协会眼科医师分会眼表与干眼学组. 中国干眼专家共识: 检查和诊断(2020年)[J]. 中华眼科杂志, 2020, 56 (10): 741- 747.
14
Sonne M , Villalta DL , Andrews DM . Development and evaluation of an office ergonomic risk checklist: ROSA: rapid office strain assessment[J]. Appl Ergon, 2012, 43 (1): 98- 108.

doi: 10.1016/j.apergo.2011.03.008
15
Kamoy B , Magno M , Noland ST , et al. Video display terminal use and dry eye: Preventive measures and future perspectives[J]. Acta Ophthalmol, 2022, 100 (7): 723- 739.

doi: 10.1111/aos.15105
16
Yamanishi R , Sawada N , Hanyuda A , et al. Relation between body mass index and dry eye disease: The Japan Public Health Center-Based Prospective Study for the Next Generation[J]. Eye Contact Lens, 2021, 47 (8): 449- 455.

doi: 10.1097/ICL.0000000000000814
17
王英, 霍秀英, 郝凤花. 视屏显示终端作业人员干眼及眼表损害情况调查[J]. 工业卫生与职业病, 2020, 46 (4): 274- 276.
18
Larese Filon F , Drusian A , Ronchese F , et al. Video display operator complaints: A 10-year follow-up of visual fatigue and refractive disorders[J]. Int J Environ Res Public Health, 2019, 16 (14): 2501.

doi: 10.3390/ijerph16142501
19
Mehra D , Galor A . Digital screen use and dry eye: A review[J]. Asia Pac J Ophthalmol (Phila), 2020, 9 (6): 491- 497.

doi: 10.1097/APO.0000000000000328
20
Coles-Brennan C , Sulley A , Young G . Management of digital eye strain[J]. Clin Exp Optom, 2019, 102 (1): 18- 29.

doi: 10.1111/cxo.12798
21
崇君慈. 干眼症发病机制及手术治疗研究进展[J]. 中外医学研究, 2022, 20 (33): 181- 184.
22
Aćimović L , Stanojlović S , Kalezić T , et al. Evaluation of dry eye symptoms and risk factors among medical students in Serbia[J]. PLoS One, 2022, 17 (10): e0275624.
23
张源, 马恩普, 潘蓓, 等. 视频终端尺寸对儿童视疲劳的影响[J]. 武警医学, 2022, 33 (12): 1016- 1019.
24
Bhatnagar KR , Dixit SG , Pandey L , et al. Digital eye strain among medical students associated with shifting to e-learning during COVID-19 pandemic: An online survey[J]. Indian J Ophthalmol, 2024, 72 (1): 98- 104.
25
Huyhua-Gutierrez SC , Zeladita-Huaman JA , Díaz-Manchay RJ , et al. Digital eye strain among Peruvian nursing students: Prevalence and associated factors[J]. Int J Environ Res Public Health, 2023, 20 (6): 5067.
26
Ekemiri K , McKnight D , Ekemiri C , et al. Computer vision syndrome and associated factors among urban and rural bankers in Trinidad and Tobago[J]. PeerJ, 2024, 12, e18584.
27
Ide T , Toda I , Miki E , et al. Effect of blue light-reducing eye glasses on critical flicker frequency[J]. Asia Pac J Ophthalmol (Phila), 2015, 4 (2): 80- 85.
28
Kaur K , Gurnani B , Nayak S , et al. Digital eye strain: A comprehensive review[J]. Ophthalmol Ther, 2022, 11 (5): 1655- 1680.
29
邹亚双. 井工煤矿环境照度和噪声强度对视疲劳的影响研究[D]. 徐州: 中国矿业大学, 2022.
[1] 刘伟, 郭稳, 过哲, 李春艳, 李云龙, 刘思奇, 张亮, 宋慧. 痛风患者放射学阴性骨侵蚀的相关危险因素[J]. 北京大学学报(医学版), 2025, 57(4): 735-739.
[2] 陆梦溪, 刘秋萍, 周恬静, 刘晓非, 孙烨祥, 沈鹏, 林鸿波, 唐迅, 高培. 基于社区人群队列的甘油三酯-葡萄糖指数与心血管病发病和死亡的关联[J]. 北京大学学报(医学版), 2025, 57(3): 430-435.
[3] 郭华秋, 王哲, 杨雪, 白洁. 口腔急诊出血患者的临床特征与危险因素[J]. 北京大学学报(医学版), 2025, 57(1): 142-147.
[4] 邓敏婷, 王楠, 夏斌, 赵玉鸣, 朱俊霞. 儿童及青少年挫入恒前牙自行再萌出的相关影响因素[J]. 北京大学学报(医学版), 2025, 57(1): 148-153.
[5] 李钰锴, 王红彦, 罗靓, 李云, 李春. 抗磷脂抗体在白塞病合并血栓中的临床意义[J]. 北京大学学报(医学版), 2024, 56(6): 1036-1040.
[6] 田杨, 韩永正, 李娇, 王明亚, 曲音音, 房景超, 金辉, 李民, 王军, 徐懋, 王圣林, 郭向阳. 颈椎前路手术后硬膜外血肿的发生率和危险因素[J]. 北京大学学报(医学版), 2024, 56(6): 1058-1064.
[7] 王明瑞, 赖金惠, 姬家祥, 唐鑫伟, 胡浩浦, 王起, 许克新, 徐涛, 胡浩. 使用中文版威斯康星结石生活质量问卷预测肾结石患者生活质量降低的危险因素[J]. 北京大学学报(医学版), 2024, 56(6): 1069-1074.
[8] 李志存, 吴天俣, 梁磊, 范宇, 孟一森, 张骞. 穿刺活检单针阳性前列腺癌术后病理升级的危险因素分析及列线图模型构建[J]. 北京大学学报(医学版), 2024, 56(5): 896-901.
[9] 颜野,李小龙,夏海缀,朱学华,张羽婷,张帆,刘可,刘承,马潞林. 前列腺癌根治术后远期膀胱过度活动症的危险因素[J]. 北京大学学报(医学版), 2024, 56(4): 589-593.
[10] 陈延,李况蒙,洪锴,张树栋,程建星,郑仲杰,唐文豪,赵连明,张海涛,姜辉,林浩成. 阴茎海绵体注射试验对阴茎血管功能影响的回顾性研究[J]. 北京大学学报(医学版), 2024, 56(4): 680-686.
[11] 庞博,郭桐君,陈曦,郭华棋,石嘉章,陈娟,王欣梅,李耀妍,单安琪,余恒意,黄婧,汤乃军,王艳,郭新彪,李国星,吴少伟. 天津与上海35岁以上人群氮氧化物个体暴露水平及其影响因素[J]. 北京大学学报(医学版), 2024, 56(4): 700-707.
[12] 和静,房中则,杨颖,刘静,马文瑶,霍勇,高炜,武阳丰,谢高强. 血浆中脂质代谢分子与颈动脉粥样硬化斑块、传统心血管危险因素及膳食因素的关系[J]. 北京大学学报(医学版), 2024, 56(4): 722-728.
[13] 蔡珊,张依航,陈子玥,刘云飞,党佳佳,师嫡,李佳欣,黄天彧,马军,宋逸. 北京市中小学生身体活动时间现状及影响因素的路径[J]. 北京大学学报(医学版), 2024, 56(3): 403-410.
[14] 张祖洪,陈天娇,马军. 中小学生青春发动时相与心血管代谢危险因素的相关性[J]. 北京大学学报(医学版), 2024, 56(3): 418-423.
[15] 林郁婷,王华丽,田宇,巩俐彤,常春. 北京市老年人认知功能的影响因素[J]. 北京大学学报(医学版), 2024, 56(3): 456-461.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!