北京大学学报(医学版) ›› 2025, Vol. 57 ›› Issue (5): 821-826. doi: 10.19723/j.issn.1671-167X.2025.05.002

• 专家笔谈 • 上一篇    下一篇

人工智能驱动口腔医学:临床、科研、教学与管理的创新探索

邓旭亮*(), 徐明明, 杜宸临   

  1. 北京大学口腔医学院·口腔医院特诊科, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 北京 100081
  • 收稿日期:2025-08-05 出版日期:2025-10-18 发布日期:2025-08-28
  • 通讯作者: 邓旭亮

Artificial intelligence in stomatology: Innovations in clinical practice, research, education, and healthcare management

Xuliang DENG*(), Mingming XU, Chenlin DU   

  1. Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
  • Received:2025-08-05 Online:2025-10-18 Published:2025-08-28
  • Contact: Xuliang DENG

RICH HTML

  

摘要: 近年来,我国持续面临口腔疾病发病率居高不下、高质量口腔诊疗资源分布不均等突出问题。在此背景下,作为以数据驱动、算法支持和模型推理为核心的智能技术体系,人工智能(artificial intelligence,AI)在口腔医学中持续拓展其应用边界。为此,本文系统回顾了AI在口腔医学领域的最新应用进展,涵盖临床诊疗、基础与材料科学研究、医学教育和医院管理等多个关键环节。具体而言,在临床方面,AI显著提升了口腔疾病的诊断准确性、治疗方案的制定效率,以及手术操作的智能化水平;在科研方面,机器学习加快了口腔疾病生物标志物的识别、口腔微生态的解析与新型生物材料的研发进程;在教育方面,AI助力构建口腔医学知识图谱,推动个性化学习与虚拟仿真训练,促进教学模式的深度变革;在医院管理层面,基于大语言模型的智能体已广泛应用于智能分诊、预问诊生成、病历文书处理与质控审核,有效提升了医疗服务的规范化和精细化水平。在此基础上,一个以“AI口腔助手”为核心的多智能体协同体系正逐步构建,涵盖影像分析、治疗规划、术中导航、随访预测、患者沟通和行政管理等多个环节,通过统一接口与知识系统,实现覆盖诊疗全流程的人机协同。尽管AI已取得显著成效,其在实际应用中仍面临数据隐私保护、模型稳定性、跨机构适应性及可解释性等多重挑战。未来亟需构建联邦学习框架、开展多中心验证、引入因果推理方法并健全伦理治理体系,以保障AI在临床中的安全性与可用性。在上述基础上,AI有望从“辅助工具”迈向“可信伙伴”,以持续推动我国口腔医学服务体系向更加可及、高效与高质量的方向迈进。

关键词: 人工智能, 口腔医学, 深度学习, 智能体

Abstract: In recent years, China has continued to face a high prevalence of oral diseases, along with uneven access to high-quality dental care. Against this backdrop, artificial intelligence (AI), as a data-driven, algorithm-supported, and model-centered technology system, has rapidly expanded its role in transforming the landscape of stomatology. This review summarizes recent advances in the application of AI in stomatology across clinical care, biomedical and materials research, education, and hospital management. In clinical settings, AI has improved diagnostic accuracy, streamlined treatment planning, and enhanced surgical precision and efficiency. In research, machine learning has accelerated the identification of disease biomarkers, deepened insights into the oral microbiome, and supported the development of novel biomaterials. In education, AI has enabled the construction of knowledge graphs, facilitated personalized learning, and powered simulation-based training, driving innovation in teaching methodologies. Meanwhile, in hospital operations, intelligent agents based on large language models (LLMs) have been widely deployed for intelligent triage, structured pre-consultations, automated clinical documentation, and quality control, contributing to more standardized and efficient healthcare delivery. Building on these foundations, a multi-agent collaborative framework centered around an AI assistant for stomatology is gradually emerging, integrating task-specific agents for imaging, treatment planning, surgical navigation, follow-up prediction, patient communication, and administrative coordination. Through shared interfaces and unified knowledge systems, these agents support seamless human-AI collaboration across the full continuum of care. Despite these achievements, the broader deployment of AI still faces challenges including data privacy, model robustness, cross-institution generalization, and interpretability. Addressing these issues will require the development of federated learning frameworks, multi-center validation, causal reasoning approaches, and strong ethical governance. With these foundations in place, AI is poised to move from a supportive tool to a trusted partner in advancing accessible, efficient, and high-quality stomatology services in China.

Key words: Artifical intelligence, Stomatology, Deep leaning, Agent

中图分类号: 

  • R78
1
王兴. 第四次全国口腔健康流行病学调查报告[M]. 北京: 人民卫生出版社, 2018: 1- 243.
2
Righolt AJ , Jevdjevic M , Marcenes W , et al. Global-, regional-, and country-level economic impacts of dental diseases in 2015[J]. J Dent Res, 2018, 97 (5): 501- 507.

doi: 10.1177/0022034517750572
3
Matsuyama Y , Jürges H , Listl S . Causal effect of tooth loss on cardiovascular diseases[J]. J Dent Res, 2023, 102 (1): 37- 44.

doi: 10.1177/00220345221120164
4
Dye BA . The global burden of oral disease: Research and public health significance[J]. J Dent Res, 2017, 96 (4): 361- 363.

doi: 10.1177/0022034517693567
5
Zhou SK , Greenspan H , Davatzikos C , et al. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises[J]. Proc IEEE Inst Electr Electron Eng, 2021, 109 (5): 820- 838.

doi: 10.1109/JPROC.2021.3054390
6
Huang SC , Pareek A , Jensen M , et al. Self-supervised learning for medical image classification: A systematic review and implementation guidelines[J]. NPJ Digit Med, 2023, 6 (1): 74.

doi: 10.1038/s41746-023-00811-0
7
Sau A , Pastika L , Sieliwonczyk E , et al. Artificial intelligence-enabled electrocardiogram for mortality and cardiovascular risk estimation: A model development and validation study[J]. Lancet Digit Health, 2024, 6 (11): e791- e802.

doi: 10.1016/S2589-7500(24)00172-9
8
Moor M , Banerjee O , Abad ZSH , et al. Foundation models for generalist medical artificial intelligence[J]. Nature, 2023, 616 (7956): 259- 265.

doi: 10.1038/s41586-023-05881-4
9
Du C , Chen X , Wang J , et al. Prompting vision-language models for dental notation aware abnormality detection[M]. Cham: Springer Nature Switzerland, 2024: 687- 697.
10
Panetta K , Rajendran R , Ramesh A , et al. Tufts dental database: A multimodal panoramic X-ray dataset for benchmarking diagnostic systems[J]. IEEE J Biomed Health Inform, 2022, 26 (4): 1650- 1659.

doi: 10.1109/JBHI.2021.3117575
11
Tan M , Cui Z , Li Y , et al. PerioAI: A digital system for periodontal disease diagnosis from an intra-oral scan and cone-beam CT image[J]. Cell Rep Med, 2025, 6 (6): 102186.

doi: 10.1016/j.xcrm.2025.102186
12
Cui Z , Fang Y , Mei L , et al. A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images[J]. Nat Commun, 2022, 13 (1): 2096.

doi: 10.1038/s41467-022-29637-2
13
Xu M, Ye C, Zeng Z, et al. Adopting generative AI with precaution in dentistry: A review and reflection[C]//2024 IEEE International Conference on Digital Health (ICDH). July 7-13, 2024. Shenzhen, China: IEEE, 2024: 244-256.
14
Chen X , Guo J , Ye J , et al. Detection of proximal caries lesions on bitewing radiographs using deep learning method[J]. Caries Res, 2022, 56 (5/6): 455- 463.
15
Chen Z , Yu Y , Liu S , et al. A deep learning and radiomics fusion model based on contrast-enhanced computer tomography improves preoperative identification of cervical lymph node metastasis of oral squamous cell carcinoma[J]. Clin Oral Investig, 2023, 28 (1): 39.

doi: 10.1007/s00784-023-05423-2
16
Liu J , Hao J , Lin H , et al. Deep learning-enabled 3D multimodal fusion of cone-beam CT and intraoral mesh scans for clinically applicable tooth-bone reconstruction[J]. Patterns (NY), 2023, 4 (9): 100825.

doi: 10.1016/j.patter.2023.100825
17
Tian S , Wang M , Yuan F , et al. Efficient computer-aided design of dental inlay restoration: A deep adversarial framework[J]. IEEE Trans Med Imag, 2021, 40 (9): 2415- 2427.

doi: 10.1109/TMI.2021.3077334
18
Yang X , Li X , Luo X , et al. Simplify implant depth prediction as video grounding: A texture perceive implant depth prediction network[M]. Cham: Springer Nature Switzerland, 2024: 606- 615.
19
吴宇佳, 周崇阳, 徐子能, 等. 基于机器学习的可摘局部义齿基牙选择模型的合理性评价[J]. 中国实用口腔科杂志, 2023, 16 (3): 333- 338.
20
Liu Y , Xie R , Wang L , et al. Fully automatic AI segmentation of oral surgery-related tissues based on cone beam computed tomography images[J]. Int J Oral Sci, 2024, 16 (1): 34.

doi: 10.1038/s41368-024-00294-z
21
van Nistelrooij N , Schitter S , van Lierop P , et al. Detecting mandible fractures in CBCT scans using a 3-stage neural network[J]. J Dent Res, 2024, 103 (13): 1384- 1391.

doi: 10.1177/00220345241256618
22
Hu J , Feng Z , Mao Y , et al. A location constrained dual-branch network for reliable diagnosis of jaw tumors and cysts[M]. Cham: Springer International Publishing, 2021: 723- 732.
23
Zhang R , Jie B , He Y , et al. TCFNet: Bidirectional face-bone transformation via a Transformer-based coarse-to-fine point movement network[J]. Med Image Anal, 2025, 105, 103653.

doi: 10.1016/j.media.2025.103653
24
Andlauer R , Wachter A , Schaufelberger M , et al. 3D-guided face manipulation of 2D images for the prediction of post-operative outcome after cranio-maxillofacial surgery[J]. IEEE Trans Image Process, 2021, 30, 7349- 7363.

doi: 10.1109/TIP.2021.3096081
25
Wang X , Xu Z , Tong Y , et al. Detection and classification of mandibular fracture on CT scan using deep convolutional neural network[J]. Clin Oral Investig, 2022, 26 (6): 4593- 4601.

doi: 10.1007/s00784-022-04427-8
26
Han B , Jie B , Zhou L , et al. Statistical and individual characteristics-based reconstruction for craniomaxillofacial surgery[J]. Int J Comput Assist Radiol Surg, 2022, 17 (6): 1155- 1165.

doi: 10.1007/s11548-022-02626-y
27
Pei Y, Liu B, Zha H, et al. Anatomical structure sketcher for cephalograms by bimodal deep learning[C]//Proceedings ofthe British Machine Vision Conference 2013. Bristol: British Machine Vision Association, 2013: 102.1-102.11.
28
Wei G, Cui Z, Liu Y, et al. TANet: towards fully automatic tooth arrangement[C]//European Conference on computer vision. Cham: Springer International Publishing, 2020: 481-497.
29
Fan Y , Wei G , Wang C , et al. Collaborative tooth motion diffusion model in digital orthodontics[J]. Proc AAAI Conf Artif Intell, 2024, 38 (2): 1679- 1687.
30
Tian Y , Jian G , Wang J , et al. A revised approach to orthodontic treatment monitoring from oralscan video[J]. IEEE J Biomed Health Inform, 2023, 27 (12): 5827- 5836.

doi: 10.1109/JBHI.2023.3319361
31
Gong B , Chang Q , Shi T , et al. Research of orthodontic soft tissue profile prediction based on conditional generative adversarial networks[J]. J Dent, 2025, 154, 105570.

doi: 10.1016/j.jdent.2025.105570
32
彭歆, 王海辉, 贾梦琪, 等. 基于机器学习的预后生存阶段预测方法和系统: 中国, CN114496306A[P]. 2022-05-13.
33
Xu Y , Liu X , Cao X , et al. Artificial intelligence: A powerful paradigm for scientific research[J]. Innovation (Camb), 2021, 2 (4): 100179.
34
Xu T , Niu Y , Deng C , et al. Saliva MicroAge: A salivary microbiome based machine learning model for noninvasive aging assessment and health state prediction[J]. iMetaOmics, 2025, 2 (3): e70040.
35
Wang B , Lin P , Zhong Y , et al. Explainable deep learning and virtual evolution identifies antimicrobial peptides with activity against multidrug-resistant human pathogens[J]. Nat Microbiol, 2025, 10 (2): 332- 347.

doi: 10.1038/s41564-024-01907-3
36
Dai Y , Wang P , Mishra A , et al. 3D bioprinting and artificial intelligence-assisted biofabrication of personalized oral soft tissue constructs[J]. Adv Healthc Mater, 2025, 14 (13): e2402727.

doi: 10.1002/adhm.202402727
37
Zhou Y , Ping X , Guo Y , et al. Assessing biomaterial-induced stem cell lineage fate by machine learning-based artificial intelligence[J]. Adv Mater, 2023, 35 (19): e2210637.

doi: 10.1002/adma.202210637
38
Shi M , Mo W , Qi H , et al. Oxygen ion implantation improving cell adhesion on titanium surfaces through increased attraction of fibronectin PHSRN domain[J]. Adv Healthc Mater, 2022, 11 (10): e2101983.

doi: 10.1002/adhm.202101983
[1] 俞光岩. 口腔医学行业的发展趋势[J]. 北京大学学报(医学版), 2025, 57(5): 817-820.
[2] 李浙民, 季加孚, 李国新, 李子禹, 步召德, 高翔宇, 董迪, 唐磊, 邢晓芳, 贾淑芹, 郭婷, 张连海, 陕飞, 季鑫, 王安强. 胃癌精准诊疗技术的创建与推广[J]. 北京大学学报(医学版), 2025, 57(5): 864-867.
[3] 朱玉佳, 沈华, 温奥楠, 高梓翔, 秦庆钊, 单珅瑶, 李文博, 傅湘玲, 赵一姣, 王勇. 三维颌面对称参考平面智能构建的深度学习算法[J]. 北京大学学报(医学版), 2025, 57(1): 113-120.
[4] 许克新,丁泽华. 人工智能在功能泌尿外科的应用[J]. 北京大学学报(医学版), 2023, 55(5): 771-774.
[5] 刘想,谢辉辉,许玉峰,张晓东,陶晓峰,柳林,王霄英. 人工智能对提高放射科住院医生诊断胸部肋骨骨折一致性的价值[J]. 北京大学学报(医学版), 2023, 55(4): 670-675.
[6] 孙玉春,郭雨晴,陈虎,邓珂慧,李伟伟. 口腔精准仿生修复技术的自主创新研发与转化[J]. 北京大学学报(医学版), 2022, 54(1): 7-12.
[7] 朱玉佳,许晴,赵一姣,张磊,付子旺,温奥楠,高梓翔,张昀,傅湘玲,王勇. 深度学习算法辅助构建三维颜面正中矢状平面[J]. 北京大学学报(医学版), 2022, 54(1): 134-139.
[8] 刘云松,周倜,叶红强. 前牙美学修复的整体策略及细节剖析[J]. 北京大学学报(医学版), 2022, 54(1): 1-6.
[9] 赵思铭,赵晓含,张杰,王党校,王晓燕. 虚拟现实技术用于龋坏识别教学[J]. 北京大学学报(医学版), 2021, 53(1): 139-142.
[10] 夏斌,王建红,肖雨萌,刘克英,杨旭东,葛立宏. 应用韦氏智力量表评估全身麻醉下牙齿治疗对儿童的影响[J]. 北京大学学报(医学版), 2016, 48(2): 336-340.
[11] 陈红涛, 姬爱平. 口腔急诊患者全身健康状况的临床分析[J]. 北京大学学报(医学版), 2015, 47(2): 344-348.
[12] 夏斌,秦满,马文利,刘鹤,王建红,刘克英,刘瑞昌,杨旭东,葛立宏. 693例儿童全身麻醉下牙齿治疗的特征分析[J]. 北京大学学报(医学版), 2013, 45(6): 984-988.
[13] 夏斌, 秦满, 韩烨, 张笋. 儿童口腔科门诊治疗需求特征分析及对策[J]. 北京大学学报(医学版), 2013, 45(1): 92-96.
[14] 唐亮, 金岩, 王松灵, 施松涛. 以转化为导向的口腔医学与干细胞研究[J]. 北京大学学报(医学版), 2011, 43(1): 1-5.
[15] 吕培军, 孙玉春. 口腔修复计算机辅助设计/制作的过去、现在和将来[J]. 北京大学学报(医学版), 2010, 42(1): 14-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!