Journal of Peking University (Health Sciences) ›› 2022, Vol. 54 ›› Issue (3): 458-467. doi: 10.19723/j.issn.1671-167X.2022.03.010
Previous Articles Next Articles
Yu-han DENG1,Yong JIANG2,3,Zi-yao WANG1,Shuang LIU1,Yu-xin WANG1,Bao-hua LIU1,*()
CLC Number:
1 |
Katan M , Luft A . Global burden of stroke[J]. Semin Neurol, 2018, 38 (2): 208- 211.
doi: 10.1055/s-0038-1649503 |
2 |
Rochmah TN , Rahmawati IT , Dahlui M , et al. Economic burden of stroke disease: A systematic review[J]. Int J Environ Res Public Health, 2021, 18 (14): 7552.
doi: 10.3390/ijerph18147552 |
3 |
Sarti C , Rastenyte D , Cepaitis Z , et al. International trends in mortality from stroke, 1968 to 1994[J]. Stroke, 2000, 31 (7): 1588- 1601.
doi: 10.1161/01.STR.31.7.1588 |
4 |
Handschu R , Haslbeck M , Hartmann A , et al. Mortality prediction in critical care for acute stroke: Severity of illness-score or coma-scale?[J]. J Neurol, 2005, 252 (10): 1249- 1254.
doi: 10.1007/s00415-005-0853-5 |
5 |
Ryan L , Lam C , Mataraso S , et al. Mortality prediction model for the triage of COVID-19, pneumonia, and mechanically ventilated ICU patients: A retrospective study[J]. Ann Med Surg (Lond), 2020, 59, 207- 216.
doi: 10.1016/j.amsu.2020.09.044 |
6 |
Nemati S , Holder A , Razmi F , et al. An interpretable machine learning model for accurate prediction of sepsis in the ICU[J]. Crit Care Med, 2018, 46 (4): 547- 553.
doi: 10.1097/CCM.0000000000002936 |
7 |
LeCun Y , Bengio Y , Hinton G . Deep learning[J]. Nature, 2015, 521 (7553): 436- 444.
doi: 10.1038/nature14539 |
8 |
Cheng JZ , Ni D , Chou YH , et al. Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans[J]. Sci Rep, 2016, 6, 24454.
doi: 10.1038/srep24454 |
9 |
Kooi T , Litjens G , van Ginneken B , et al. Large scale deep learning for computer aided detection of mammographic lesions[J]. Med Image Anal, 2017, 35, 303- 312.
doi: 10.1016/j.media.2016.07.007 |
10 | Choi E , Bahadori MT , Schuetz A , et al. Doctor AI: Predicting clinical events via recurrent neural networks[J]. JMLR Workshop Conf Proc, 2016, 56, 301- 318. |
11 |
Hochreiter S , Schmidhuber J . Long short-term memory[J]. Neural Comput, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735 |
12 |
Thorsen-Meyer HC , Nielsen AB , Nielsen AP , et al. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: A retrospective study of high-frequency data in electronic patient records[J]. Lancet Digit Health, 2020, 2 (4): e179- e191.
doi: 10.1016/S2589-7500(20)30018-2 |
13 | Xia J , Pan S , Zhu M , et al. A long short-term memory ensemble approach for improving the outcome prediction in intensive care unit[J]. Comput Math Methods Med, 2019, 2019, 8152713. |
14 |
Maheshwari S , Agarwal A , Shukla A , et al. A comprehensive evaluation for the prediction of mortality in intensive care units with LSTM networks: Patients with cardiovascular disease[J]. Biomed Tech (Berl), 2020, 65 (4): 435- 446.
doi: 10.1515/bmt-2018-0206 |
15 |
Ho LV , Aczon M , Ledbetter D , et al. Interpreting a recurrent neural network's predictions of ICU mortality risk[J]. J Biomed Inform, 2021, 114, 103672.
doi: 10.1016/j.jbi.2021.103672 |
16 | 王琦琦, 于石成, 亓晓, 等. Logistic族回归及其应用[J]. 中华预防医学杂志, 2019, 53 (9): 955- 960. |
17 |
Jhou HJ , Chen PH , Yang LY , et al. Plasma anion gap and risk of in-hospital mortality in patients with acute ischemic stroke: Analysis from the MIMIC-Ⅳ database[J]. J Pers Med, 2021, 11 (10): 1004.
doi: 10.3390/jpm11101004 |
18 |
Zhao N , Hu W , Wu Z , et al. The red blood cell distribution width-albumin ratio: A promising predictor of mortality in stroke patients[J]. Int J Gen Med, 2021, 14, 3737- 3747.
doi: 10.2147/IJGM.S322441 |
19 | 邱锡鹏. 神经网络与深度学习[M]. 北京: 机械工业出版社, 2020: 141- 145. |
20 |
Kaji DA , Zech JR , Kim JS , et al. An attention based deep lear-ning model of clinical events in the intensive care unit[J]. PLoS One, 2019, 14 (2): e0211057.
doi: 10.1371/journal.pone.0211057 |
21 |
Lopez Bernal J , Soumerai S , Gasparrini A . A methodological framework for model selection in interrupted time series studies[J]. J Clin Epidemiol, 2018, 103, 82- 91.
doi: 10.1016/j.jclinepi.2018.05.026 |
22 |
Yu Y , Si X , Hu C , et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Comput, 2019, 31 (7): 1235- 1270.
doi: 10.1162/neco_a_01199 |
23 |
Gandin I , Scagnetto A , Romani S , et al. Interpretability of time-series deep learning models: A study in cardiovascular patients admitted to intensive care unit[J]. J Biomed Inform, 2021, 121, 103876.
doi: 10.1016/j.jbi.2021.103876 |
24 |
Weimar C , Ziegler A , Konig IR , et al. Predicting functional outcome and survival after acute ischemic stroke[J]. J Neurol, 2002, 249 (7): 888- 895.
doi: 10.1007/s00415-002-0755-8 |
25 | Koyama T , Uchiyama Y , Domen K . Outcome in stroke patients is associated with age and fractional anisotropy in the cerebral peduncles: A multivariate regression study[J]. Prog Rehabil Med, 2020, 5, 20200006. |
26 |
Duarte E , Marco E , Muniesa JM , et al. Early detection of non-ambulatory survivors six months after stroke[J]. NeuroRehabilitation, 2010, 26 (4): 317- 323.
doi: 10.3233/NRE-2010-0568 |
27 |
Fuentes B , Castillo J , San Jose B , et al. The prognostic value of capillary glucose levels in acute stroke[J]. Stroke, 2009, 40 (2): 562- 568.
doi: 10.1161/STROKEAHA.108.519926 |
28 |
Baird TA , Parsons MW , Phanh T , et al. Persistent poststroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome[J]. Stroke, 2003, 34 (9): 2208- 2214.
doi: 10.1161/01.STR.0000085087.41330.FF |
29 |
Förstermann U , Münzel T . Endothelial nitric oxide synthase in vascular disease: From marvel to menace[J]. Circulation, 2006, 113 (13): 1708- 1714.
doi: 10.1161/CIRCULATIONAHA.105.602532 |
30 |
Virley D , Hadingham SJ , Roberts JC , et al. A new primate model of focal stroke: Endothelin-1-induced middle cerebral artery occlusion and reperfusion in the common marmoset[J]. J Cereb Blood Flow Metab, 2004, 24 (1): 24- 41.
doi: 10.1097/01.WCB.0000095801.98378.4A |
31 |
Martini SR , Kent TA . Hyperglycemia in acute ischemic stroke: A vascular perspective[J]. J Cereb Blood Flow Metab, 2007, 27 (3): 435- 451.
doi: 10.1038/sj.jcbfm.9600355 |
32 |
You S , Zheng D , Zhong C , et al. Prognostic significance of blood urea nitrogen in acute ischemic stroke[J]. Circ J, 2018, 82 (2): 572- 578.
doi: 10.1253/circj.CJ-17-0485 |
33 |
Cheng J , Sun J , Yao K , et al. A variable selection method based on mutual information and variance inflation factor[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2022, 268, 120652.
doi: 10.1016/j.saa.2021.120652 |
34 | Ge W , Huh JW , Park YR , et al. An interpretable ICU mortality prediction model based on Logistic regression and recurrent neural networks with LSTM units[J]. AMIA Annu Symp Proc, 2018, 2018, 460- 469. |
35 |
Koppe G , Meyer-Lindenberg A , Durstewitz D . Deep learning for small and big data in psychiatry[J]. Neuropsychopharmacology, 2021, 46 (1): 176- 190.
doi: 10.1038/s41386-020-0767-z |
[1] | Junyong OU,Kunming NI,Lulin MA,Guoliang WANG,Ye YAN,Bin YANG,Gengwu LI,Haodong SONG,Min LU,Jianfei YE,Shudong ZHANG. Prognostic factors of patients with muscle invasive bladder cancer with intermediate-to-high risk prostate cancer [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 582-588. |
[2] | Shuai LIU,Lei LIU,Zhuo LIU,Fan ZHANG,Lulin MA,Xiaojun TIAN,Xiaofei HOU,Guoliang WANG,Lei ZHAO,Shudong ZHANG. Clinical treatment and prognosis of adrenocortical carcinoma with venous tumor thrombus [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 624-630. |
[3] | Le YU,Shaohui DENG,Fan ZHANG,Ye YAN,Jianfei YE,Shudong ZHANG. Clinicopathological characteristics and prognosis of multilocular cystic renal neoplasm of low malignant potential [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 661-666. |
[4] | Zezhen ZHOU,Shaohui DENG,Ye YAN,Fan ZHANG,Yichang HAO,Liyuan GE,Hongxian ZHANG,Guoliang WANG,Shudong ZHANG. Predicting the 3-year tumor-specific survival in patients with T3a non-metastatic renal cell carcinoma [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 673-679. |
[5] | Yangyi FANG,Qiang LI,Zhigao HUANG,Min LU,Kai HONG,Shudong ZHANG. Well-differentiated papillary mesothelial tumour of the tunica vaginalis: A case report [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 741-744. |
[6] | Yuanyuan ZENG,Yun XIE,Daonan CHEN,Ruilan WANG. Related factors of euthyroid sick syndrome in patients with sepsis [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 526-532. |
[7] | Jian-bin LI,Meng-na LYU,Qiang CHI,Yi-lin PENG,Peng-cheng LIU,Rui WU. Early prediction of severe COVID-19 in patients with Sjögren’s syndrome [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 1007-1012. |
[8] | Huan-rui LIU,Xiang PENG,Sen-lin LI,Xin GOU. Risk modeling based on HER-2 related genes for bladder cancer survival prognosis assessment [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 793-801. |
[9] | Zi-xuan XUE,Shi-ying TANG,Min QIU,Cheng LIU,Xiao-jun TIAN,Min LU,Jing-han DONG,Lu-lin MA,Shu-dong ZHANG. Clinicopathologic features and prognosis of young renal tumors with tumor thrombus [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 802-811. |
[10] | Han LU,Jian-yun ZHANG,Rong YANG,Le XU,Qing-xiang LI,Yu-xing GUO,Chuan-bin GUO. Clinical factors affecting the prognosis of lower gingival squamous cell carcinoma [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 702-707. |
[11] | Huan YU,Ruo-tong YANG,Si-yue WANG,Jun-hui WU,Meng-ying WANG,Xue-ying QIN,Tao WU,Da-fang CHEN,Yi-qun WU,Yong-hua HU. Metformin use and risk of ischemic stroke in patients with type 2 diabetes: A cohort study [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 456-464. |
[12] | Yun-fei SHI,Hao-jie WANG,Wei-ping LIU,Lan MI,Meng-ping LONG,Yan-fei LIU,Yu-mei LAI,Li-xin ZHOU,Xin-ting DIAO,Xiang-hong LI. Analysis of clinicopathological and molecular abnormalities of angioimmunoblastic T-cell lymphoma [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 521-529. |
[13] | Xiao-juan ZHU,Hong ZHANG,Shuang ZHANG,Dong LI,Xin LI,Ling XU,Ting LI. Clinicopathological features and prognosis of breast cancer with human epidermal growth factor receptor 2 low expression [J]. Journal of Peking University (Health Sciences), 2023, 55(2): 243-253. |
[14] | Yu-mei LAI,Zhong-wu LI,Huan LI,Yan WU,Yun-fei SHI,Li-xin ZHOU,Yu-tong LOU,Chuan-liang CUI. Clinicopathological features and prognosis of anorectal melanoma: A report of 68 cases [J]. Journal of Peking University (Health Sciences), 2023, 55(2): 262-269. |
[15] | Qi SHEN,Yi-xiao LIU,Qun HE. Mucinous tubular and spindle cell carcinoma of kidney: Clinicopathology and prognosis [J]. Journal of Peking University (Health Sciences), 2023, 55(2): 276-282. |
|