Journal of Peking University (Health Sciences) ›› 2023, Vol. 55 ›› Issue (6): 1007-1012. doi: 10.19723/j.issn.1671-167X.2023.06.008

Previous Articles     Next Articles

Early prediction of severe COVID-19 in patients with Sjögren’s syndrome

Jian-bin LI1,Meng-na LYU2,Qiang CHI1,Yi-lin PENG1,Peng-cheng LIU1,Rui WU1,*()   

  1. 1. Department of Rheumatology and Immunology, the first affiliated Hospital of Nanchang University, Nanchang 330006, China
    2. The First Clinical Medical College of Nanchang University, Nanchang 330006, China
  • Received:2023-08-13 Online:2023-12-18 Published:2023-12-11
  • Contact: Rui WU E-mail:tcmclinic@163.com

RICH HTML

  

Abstract:

Objective: To investigate the predictive value of blood cell ratios and inflammatory markers for adverse prognosis in patients with primary Sjögren’s syndrome (PSS) combined with coronavirus disease 2019 (COVID-19). Methods: We retrospectively collected clinical data from 80 patients with PSS and COVID-19 who visited the Rheumatology and Immunology Department of the First Affiliated Hospital of Nanchang University from December 2022 to February 2023. Inclusion criteria were (1) meeting the American College of Rheumatology (ACR) classification criteria for Sjögren’s syndrome; (2) confirmed diagnosis of COVID-19 by real-time reverse transcription polymerase chain reaction or antigen testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); (3) availability of necessary clinical data; (4) age > 18 years. According to the clinical classification criteria of the "Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (trial the 10th Revised Edition)", the patients were divided into the mild and severe groups. Disease activity in primary Sjögren' s syndrome was assessed using the European League Against Rheumatism (EULAR) Sjögren' s syndrome disease activity index (ESSDAI). Platelet-lymphocyte ratio (PLR), C-reactive protein-lymphocyte ratio (CLR), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and other laboratory data were compared between the two groups within 24-72 hours post-infection. Results: The mild group consisted of 66 cases with an average age of (51. 52±13. 16) years, and the severe group consisted of 14 cases with an average age of (52.64±10.20) years. Disease activity, CRP, platelets, PLR, and CLR were significantly higher in the severe group compared with the mild group (P < 0.05). Univariate analysis using age, disease activity, CRP, platelets, PLR, and CLR as independent variables indicated that disease activity, CRP, PLR, and CLR were correlated with the severity of COVID-19 (P < 0.05). Multivariate logistic regression analysis further confirmed that PLR (OR=1.016, P < 0.05) and CLR (OR=1.504, P < 0.05) were independent risk factors for the severity of COVID-19 in the critically ill patients. Receiver operator characteristic (ROC) curve analysis showed that the area under the curve (AUC) for PLR and CLR was 0.708 (95%CI: 0.588-0.828) and 0.725 (95%CI: 0.578-0.871), respectively. The sensitivity for PLR and CLR was 0.429 and 0.803, respectively, while the highest specificity was 0.714 and 0.758, respectively. The optimal cutoff values for PLR and CLR were 166.214 and 0.870, respectively. Conclusion: PLR and CLR, particularly the latter, may serve as simple and effective indicators for predicting the prognosis of patients with PSS and COVID-19.

Key words: Primary Sjögren's syndrome, Coronavirus disease 2019 (COVID-19), Prognosis, Platelet-lymphocyte ratio, C-reactive protein-lymphocyte ratio

CLC Number: 

  • R593.2

Table 1

Comparison of general characteristics between the two groups of patients"

Parameters Mild group (n=66) Severe group (n=14) t/χ2/Z P
Age/years, ${\bar x}$±s 51.52±13.16 52.64±10.20 -0.301 0.764
Gender, n(%) 0.653 0.516
    Male 2 (3) 0 (0)
    Female 64 (97) 14 (100)
Disease activity, n(%) 5 (7) 6 (42.82) -3.549 0.001
ESR/(mg/L), ${\bar x}$±s 18.42±9.83 17.86±10.29 0.193 8.848
CRP/(μmol/L), M(P25P75) 0.72 (0.20,1.68) 1.54 (0.54,9.40) -2.463 0.014
White blood cells/(×109/L), ${\bar x}$±s 5.86±1.95 5.06±1.42 1.447 0.152
Platelets/(×109/L), ${\bar x}$±s 213.42±69.08 253.86±61.02 -2.027 0.046
Monocytes/(×109/L), M(P25P75) 0.34 (0.28,0.54) 0.34 (0.29,0.56) -0.120 0.904
Lymphocytes/(×109/L), ${\bar x}$±s 1.79±0.65 1.59±0.41 1.115 0.268
Neutrophils/(×109/L), M(P25P75) 3.45 (2.32,4.52) 2.94 (2.59,3.98) -0.684 0.494
Immunoglobulin G/(g/L), ${\bar x}$±s 15.21±4.68 14.32±2.66 0.586 0.560
Immunoglobulin A/(g/L), ${\bar x}$±s 2.79±0.94 2.52±1.27 0.781 0.438
Immunoglobulin M/(g/L), ${\bar x}$±s 1.47±1.06 1.18±0.43 0.857 0.395
Complement C3(g/L), ${\bar x}$±s 0.79±0.12 0.73±0.10 1.309 0.196
Complement C4(g/L), ${\bar x}$±s 0.19±0.05 0.20±0.06 -0.532 0.597
NLR, ${\bar x}$±s 2.38±2.21 2.14±1.15 0.408 0.685
PLR, ${\bar x}$±s 129.95±51.73 163.92±37.90 -2.324 0.023
CLR, M(P25P75) 0.42 (0.18,0.88) 1.02 (0.37,4.99) -2.628 0.009
LMR, ${\bar x}$±s 4.75±2.20 4.34±1.52 0.665 0.508
Disease course/years, ${\bar x}$±s 6.96±5.08 9.57±4.03 -1.772 0.081
Medication
    Corticosteroids, n(%) 31 (46.97) 8 (57.14) -0.090 0.928
    Methylprednisolone, n(%) 10 (15.15) 3 (21.42) -0.214 0.831
    Hydroxychloroquine, n(%) 24 (36.36) 7 (50) -0.312 0.755
    Cyclosporine, n(%) 3 (4.54) 0 (0) -0.904 0.366

Table 2

Independent risk factors for severity classification of PSS combined with COVID-19 patients"

Parameters β SE Wald P OR 95%CI
Disease Activitya 1.597 0.822 3.775 0.052 4.909 0.986-24.752
CRPa 0.186 0.102 3.349 0.067 1.205 0.987-1.471
PLRa,b 0.015 0.007 5.146 0.023 1.016 1.002-1.029
CLRb 0.408 0.166 5.983 0.014 1.504 1.084-2.085

Figure 1

ROC curve analysis of PLR and CLR for predicting severe illness in patients with PSS combined with COVID-19 PLR, platelet-to-lymphocyte ratio; CLR, C-reactive protein-to-lymphocyte ratio; PSS, primary Sjögren’ s syndrome."

1 Wiersinga WJ , Rhodes A , Cheng AC , et al. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review[J]. JAMA, 2020, 324 (8): 782- 793.
doi: 10.1001/jama.2020.12839
2 Yüce M , Filiztekin E , Özkaya KG . COVID-19 diagnosis: A review of current methods[J]. Biosens Bioelectron, 2021, 172, 112752.
doi: 10.1016/j.bios.2020.112752
3 Pablos JL , Galindo M , Carmona L , et al. Clinical outcomes of hospitalised patients with COVID-19 and chronic inflammatory and autoimmune rheumatic diseases: A multicentric matched cohort study[J]. Ann Rheum Dis, 2020, 79 (12): 1544- 1549.
doi: 10.1136/annrheumdis-2020-218296
4 Luo H , Zhou X . Bioinformatics analysis of potential common pathogenic mechanisms for COVID-19 infection and primary Sjögren’s syndrome[J]. Front Immunol, 2022, 13, 938837.
doi: 10.3389/fimmu.2022.938837
5 Brito-Zerón P , Acar-Denizli N , Zeher M , et al. Influence of geolocation and ethnicity on the phenotypic expression of primary Sjögren’s syndrome at diagnosis in 8 310 patients: A cross-sectional study from the big data Sjögren project consortium[J]. Ann Rheum Dis, 2017, 76 (6): 1042- 1050.
doi: 10.1136/annrheumdis-2016-209952
6 Mariette X , Criswell LA . Primary Sjögren’s syndrome[J]. N Engl J Med, 2018, 378 (10): 931- 939.
doi: 10.1056/NEJMcp1702514
7 Zhang G , Hu C , Luo L , et al. Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China[J]. J Clin Virol, 2020, 127, 104364.
doi: 10.1016/j.jcv.2020.104364
8 Russell CD , Parajuli A , Gale HJ , et al. The utility of peripheral blood leucocyte ratios as biomarkers in infectious diseases: A systematic review and meta-analysis[J]. J Infect, 2019, 78 (5): 339- 348.
doi: 10.1016/j.jinf.2019.02.006
9 Qu R , Ling Y , Zhang YH , et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19[J]. J Med Virol, 2020, 92 (9): 1533- 1541.
doi: 10.1002/jmv.25767
10 Lagunas-Rangel FA . Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis[J]. J Med Virol, 2020, 92 (10): 1733- 1734.
doi: 10.1002/jmv.25819
11 Shiboski CH , Shiboski SC , Seror R , et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren’s syndrome: A consensus and data-driven methodology involving three international patient cohorts[J]. Arthritis Rheumatol, 2017, 69 (1): 35- 45.
doi: 10.1002/art.39859
12 中华人民共和国国家卫生健康委员会. 新型冠状病毒感染诊疗方案(试行第十版)[J]. 中国合理用药探索, 2023, 20 (1): 1- 11.
13 Seror R , Bowman SJ , Brito-Zeron P , et al. Eular Sjögren' s syndrome disease activity index (ESSDAI): A user guide[J]. RMD Open, 2015, 1 (1): e000022.
doi: 10.1136/rmdopen-2014-000022
14 Sacks D , Baxter B , Campbell BCV , et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke: From the American Association of Neurological Surgeons (AANS), American Society of Neuroradiology (ASNR), Cardiovascular and Interventional Radiology Society of Europe (CIRSE), Canadian Interventional Radiology Association (CIRA), Congress of Neurological Surgeons (CNS), European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke Organization (ESO), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional Radiology (SIR), Society of NeuroInterventional Surgery (SNIS), and World Stroke Organization (WSO)[J]. J Vasc Interv Radiol, 2018, 29 (4): 441- 453.
doi: 10.1016/j.jvir.2017.11.026
15 Del Valle DM , Kim-Schulze S , Huang HH , et al. An inflammatory cytokine signature predicts COVID-19 severity and survival[J]. Nat Med, 2020, 26 (10): 1636- 1643.
doi: 10.1038/s41591-020-1051-9
16 Xiang N , Havers F , Chen T , et al. Use of national pneumonia surveillance to describe influenza A(H7N9) virus epidemiology, China, 2004-2013[J]. Emerg Infect Dis, 2013, 19 (11): 1784- 1790.
17 Kaya T , Nalbant A , Kılıçıoǧlu GK , et al. The prognostic signi-ficance of erythrocyte sedimentation rate in COVID-19[J]. Rev Assoc Med Bras (1992), 2021, 67 (9): 1305- 1310.
doi: 10.1590/1806-9282.20210618
18 Lapić I , Rogić D , Plebani M . Erythrocyte sedimentation rate is associated with severe coronavirus disease 2019 (COVID-19): A pooled analysis[J]. Clin Chem Lab Med, 2020, 58 (7): 1146- 1148.
doi: 10.1515/cclm-2020-0620
19 Roescher N , Tak PP , Illei GG . Cytokines in Sjögren’s syndrome[J]. Oral Dis, 2009, 15 (8): 519- 526.
doi: 10.1111/j.1601-0825.2009.01582.x
20 Tahir Huyut M , Huyut Z , lkbahar F , et al. What is the impact and efficacy of routine immunological, biochemical and hemato-logical biomarkers as predictors of COVID-19 mortality[J]. Int Immunopharmacol, 2022, 105, 108542.
doi: 10.1016/j.intimp.2022.108542
21 Amgalan A , Othman M . Hemostatic laboratory derangements in COVID-19 with a focus on platelet count[J]. Platelets, 2020, 31 (6): 740- 745.
doi: 10.1080/09537104.2020.1768523
22 Tural Onur S , Altın S , Sokucu SN , et al. Could ferritin level be an indicator of COVID-19 disease mortality[J]. J Med Virol, 2021, 93 (3): 1672- 1677.
doi: 10.1002/jmv.26543
23 Ardestani A , Azizi Z . Targeting glucose metabolism for treatment of COVID-19[J]. Signal Transduct Target Ther, 2021, 6 (1): 112.
doi: 10.1038/s41392-021-00532-4
24 Wang K , Zhang Z , Yu M , et al. 15-day mortality and associated risk factors for hospitalized patients with COVID-19 in Wuhan, China: An ambispective observational cohort study[J]. Intensive Care Med, 2020, 46 (7): 1472- 1474.
doi: 10.1007/s00134-020-06047-w
25 Zhang JJ , Cao YY , Tan G , et al. Clinical, radiological, and laboratory characteristics and risk factors for severity and mortality of 289 hospitalized COVID-19 patients[J]. Allergy, 2021, 76 (2): 533- 550.
doi: 10.1111/all.14496
26 Manne BK , Denorme F , Middleton EA , et al. Platelet gene expression and function in patients with COVID-19[J]. Blood, 2020, 136 (11): 1317- 1329.
doi: 10.1182/blood.2020007214
27 Pormohammad A , Ghorbani S , Baradaran B , et al. Clinical characteristics, laboratory findings, radiographic signs and outcomes of 61, 742 patients with confirmed COVID-19 infection: A systematic review and meta-analysis[J]. Microb Pathog, 2020, 147, 104390.
doi: 10.1016/j.micpath.2020.104390
28 Yang X , Yang Q , Wang Y , et al. Thrombocytopenia and its association with mortality in patients with COVID- 19[J]. J Thromb Haemost, 2020, 18 (6): 1469- 1472.
doi: 10.1111/jth.14848
29 Jiang SQ , Huang QF , Xie WM , et al. The association between severe COVID-19 and low platelet count: evidence from 31 observational studies involving 7 613 participants[J]. Br J Haematol, 2020, 190 (1): e29- e33.
doi: 10.1111/bjh.16794
30 Xu Z , Shi L , Wang Y , et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. Lancet Respir Med, 2020, 8 (4): 420- 422.
doi: 10.1016/S2213-2600(20)30076-X
31 Shi H , Wang W , Yin J , et al. The inhibition of IL-2/IL-2R gives rise to CD8+ T cell and lymphocyte decrease through JAK1-STAT5 in critical patients with COVID-19 pneumonia[J]. Cell Death Dis, 2020, 11 (6): 429.
doi: 10.1038/s41419-020-2636-4
32 Liu K , Yang T , Peng XF , et al. A systematic meta-analysis of immune signatures in patients with COVID-19[J]. Rev Med Virol, 2021, 31 (4): e2195.
doi: 10.1002/rmv.2195
33 Bohn MK , Lippi G , Horvath A , et al. Molecular, serological, and biochemical diagnosis and monitoring of COVID-19: IFCC taskforce evaluation of the latest evidence[J]. Clin Chem Lab Med, 2020, 58 (7): 1037- 1052.
doi: 10.1515/cclm-2020-0722
34 Xu H , Zhong L , Deng J , et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa[J]. Int J Oral Sci, 2020, 12 (1): 8.
doi: 10.1038/s41368-020-0074-x
35 Gu X , Sha L , Zhang S , et al. Neutrophils and lymphocytes can help distinguish asymptomatic COVID-19 from moderate COVID-19[J]. Front Cell Infect Microbiol, 2021, 11, 654272.
doi: 10.3389/fcimb.2021.654272
36 Tan L , Wang Q , Zhang D , et al. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study[J]. Signal Transduct Target Ther, 2020, 5 (1): 33.
doi: 10.1038/s41392-020-0148-4
37 Yıldız F , Gökmn O . Haematologic indices and disease activity index in primary Sjögren’s syndrome[J]. Int J Clin Pract, 2021, 75 (3): e13992.
38 Damar Çakırca T , Torun A , Çakırca G , et al. Role of NLR, PLR, ELR and CLR in differentiating COVID-19 patients with and without pneumonia[J]. Int J Clin Pract, 2021, 75 (11): e14781.
39 Sarkar S , Kannan S , Khanna P , et al. Role of platelet-to-lymphocyte count ratio (PLR), as a prognostic indicator in COVID-19: A systematic review and meta-analysis[J]. J Med Virol, 2022, 94 (1): 211- 221.
doi: 10.1002/jmv.27297
40 Mertoglu C , Huyut MT , Arslan Y , et al. How do routine laboratory tests change in coronavirus disease 2019[J]. Scand J Clin Lab Invest, 2021, 81 (1): 24- 33.
doi: 10.1080/00365513.2020.1855470
41 Ben Jemaa A , Salhi N , Ben Othmen M , et al. Evaluation of individual and combined NLR, LMR and CLR ratio for prognosis disease severity and outcomes in patients with COVID-19[J]. Int Immunopharmacol, 2022, 109, 108781.
doi: 10.1016/j.intimp.2022.108781
[1] Junyong OU,Kunming NI,Lulin MA,Guoliang WANG,Ye YAN,Bin YANG,Gengwu LI,Haodong SONG,Min LU,Jianfei YE,Shudong ZHANG. Prognostic factors of patients with muscle invasive bladder cancer with intermediate-to-high risk prostate cancer [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 582-588.
[2] Shuai LIU,Lei LIU,Zhuo LIU,Fan ZHANG,Lulin MA,Xiaojun TIAN,Xiaofei HOU,Guoliang WANG,Lei ZHAO,Shudong ZHANG. Clinical treatment and prognosis of adrenocortical carcinoma with venous tumor thrombus [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 624-630.
[3] Le YU,Shaohui DENG,Fan ZHANG,Ye YAN,Jianfei YE,Shudong ZHANG. Clinicopathological characteristics and prognosis of multilocular cystic renal neoplasm of low malignant potential [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 661-666.
[4] Zezhen ZHOU,Shaohui DENG,Ye YAN,Fan ZHANG,Yichang HAO,Liyuan GE,Hongxian ZHANG,Guoliang WANG,Shudong ZHANG. Predicting the 3-year tumor-specific survival in patients with T3a non-metastatic renal cell carcinoma [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 673-679.
[5] Yangyi FANG,Qiang LI,Zhigao HUANG,Min LU,Kai HONG,Shudong ZHANG. Well-differentiated papillary mesothelial tumour of the tunica vaginalis: A case report [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 741-744.
[6] Yuanyuan ZENG,Yun XIE,Daonan CHEN,Ruilan WANG. Related factors of euthyroid sick syndrome in patients with sepsis [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 526-532.
[7] Huan-rui LIU,Xiang PENG,Sen-lin LI,Xin GOU. Risk modeling based on HER-2 related genes for bladder cancer survival prognosis assessment [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 793-801.
[8] Zi-xuan XUE,Shi-ying TANG,Min QIU,Cheng LIU,Xiao-jun TIAN,Min LU,Jing-han DONG,Lu-lin MA,Shu-dong ZHANG. Clinicopathologic features and prognosis of young renal tumors with tumor thrombus [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 802-811.
[9] Han LU,Jian-yun ZHANG,Rong YANG,Le XU,Qing-xiang LI,Yu-xing GUO,Chuan-bin GUO. Clinical factors affecting the prognosis of lower gingival squamous cell carcinoma [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 702-707.
[10] Yun-fei SHI,Hao-jie WANG,Wei-ping LIU,Lan MI,Meng-ping LONG,Yan-fei LIU,Yu-mei LAI,Li-xin ZHOU,Xin-ting DIAO,Xiang-hong LI. Analysis of clinicopathological and molecular abnormalities of angioimmunoblastic T-cell lymphoma [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 521-529.
[11] Xiao-juan ZHU,Hong ZHANG,Shuang ZHANG,Dong LI,Xin LI,Ling XU,Ting LI. Clinicopathological features and prognosis of breast cancer with human epidermal growth factor receptor 2 low expression [J]. Journal of Peking University (Health Sciences), 2023, 55(2): 243-253.
[12] Yu-mei LAI,Zhong-wu LI,Huan LI,Yan WU,Yun-fei SHI,Li-xin ZHOU,Yu-tong LOU,Chuan-liang CUI. Clinicopathological features and prognosis of anorectal melanoma: A report of 68 cases [J]. Journal of Peking University (Health Sciences), 2023, 55(2): 262-269.
[13] Qi SHEN,Yi-xiao LIU,Qun HE. Mucinous tubular and spindle cell carcinoma of kidney: Clinicopathology and prognosis [J]. Journal of Peking University (Health Sciences), 2023, 55(2): 276-282.
[14] Qian SU,Xin PENG,Chuan-xiang ZHOU,Guang-yan YU. Clinicopathological characteristics and prognosis of non-Hodgkin lymphoma in oral and maxillofacial regions: An analysis of 369 cases [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 13-21.
[15] Quan ZHANG,Hai-feng SONG,Bing-lei MA,Zhe-nan ZHANG,Chao-hui ZHOU,Ao-lin LI,Jun LIU,Lei LIANG,Shi-yu ZHU,Qian ZHANG. Pre-operative prognostic nutritional index as a predictive factor for prognosis in non-metastatic renal cell carcinoma treated with surgery [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 149-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!