北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (5): 884-895. doi: 10.19723/j.issn.1671-167X.2022.05.016

• 论著 • 上一篇    下一篇

KRAS G12V特异性T细胞受体治疗恶性肿瘤的临床前研究

程晓静1,蒋栋2,张连海1,王江华2,李雅真2,翟佳慧2,闫宝琪2,张露露2,谢兴旺2,*(),李子禹1,*(),季加孚1,*()   

  1. 1. 北京大学肿瘤医院暨北京市肿瘤防治研究所胃肠肿瘤中心,恶性肿瘤发病机制及转化研究教育部重点实验室,北京 100142
    2. 北京可瑞生物科技有限公司,北京 100094
  • 收稿日期:2022-06-27 出版日期:2022-10-18 发布日期:2022-10-14
  • 通讯作者: 谢兴旺,李子禹,季加孚 E-mail:xiexingwang@corregene.com;ziyu_li@hsc.pku.edu.cn;jijiafu@hsc.pku.edu.cn
  • 作者简介:季加孚,主任医师、教授、博士生导师,北京大学肿瘤医院大外科主任、胃肠肿瘤中心主任,教育部恶性肿瘤发病机制及转化重点实验室主任,北京大学肿瘤研究中心主任,国务院政府特殊津贴专家,中国人民政治协商会议第十三届全国委员会委员,中国民主同盟中央委员会常务委员。现任中国抗癌协会副理事长,健康中国行动推进委员会专家咨询委员会委员,中国医疗保健国际交流促进会副会长,中华医学会外科学分会常务委员兼秘书长,美国外科学会会员(Fellow of American College of Surgeons, FACS),英国皇家外科学院院士(Fellow of Royal Colleges of Surgeons, FRCS),亚洲外科学会(Asian Surgical Association, ASA)常务委员,国际胃癌学会(International Gastric Cancer Association, IGCA)前任主席。
    以第一作者或通信作者在LancetScienceCellJAMA等期刊发表论文400余篇,主编国内首部胃癌英文专著及首个SCI肿瘤学期刊(现为高质量科技期刊分级目录T1级期刊),培养研究生及博士后120余人。以第一完成人获国家科技进步二等奖1项、省部级一等奖3项,获何梁何利科技进步奖、吴阶平·保罗杨森医学医药奖、英国文化教育协会职业成就奖及中菲亚洲国际和平奖。获评国家卫生健康委员会突出贡献专家、北京学者、约翰·霍普金斯大学医学院兼职教授
  • 基金资助:
    北京市科委、中关村管委会医药创新品种及平台培育项目(Z211100002521027);北京大学肿瘤医院科学基金(2021-8);北京市属医学科研院所公益发展改革试点项目(第三批)(京医研2019-01)

Preclinical study of T cell receptor specifically reactive with KRAS G12V mutation in the treatment of malignant tumors

Xiao-jing CHENG1,Dong JIANG2,Lian-hai ZHANG1,Jiang-hua WANG2,Ya-zhen LI2,Jia-hui ZHAI2,Bao-qi YAN2,Lu-lu ZHANG2,Xing-wang XIE2,*(),Zi-yu LI1,*(),Jia-fu JI1,*()   

  1. 1. Department of Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education; Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
    2. Beijing CorreGene Biotechnology Co., Ltd., Beijing 100094, China
  • Received:2022-06-27 Online:2022-10-18 Published:2022-10-14
  • Contact: Xing-wang XIE,Zi-yu LI,Jia-fu JI E-mail:xiexingwang@corregene.com;ziyu_li@hsc.pku.edu.cn;jijiafu@hsc.pku.edu.cn
  • Supported by:
    the Cultivation of Pharmaceutical Innovation Varieties and Platforms of Beijing Municipal Science and Technology Commission and Zhongguancun Administrative Committee(Z211100002521027);the Peking University Cancer Hospital Science Foundation(2021-8);the Pilot Project (3rd Round) to Reform Public Development of Beijing Municipal Medical Research Institute(京医研2019-01)

摘要:

目的: KRAS G12V是最为常见的KRAS突变类型之一,是一个T细胞表位抗原,目前尚无针对该位点的靶向药物,本研究旨在克隆能够特异性识别该表位抗原的T细胞受体(T cell receptor, TCR),通过体内外实验对该TCR基因修饰T细胞(TCR engineered T cells, TCR-T)靶向KRAS G12V突变肿瘤的安全性和有效性进行评估。方法: 从1例结直肠癌患者的肿瘤浸润淋巴细胞中获得靶向KRAS G12V8-16表位的高亲和力TCR序列,构建该TCR慢病毒载体并感染人源T细胞,获得TCR-T。采用抗原肽激活、γ-干扰素(interferon-γ, IFN-γ) 酶联免疫吸附试验(enzyme linked immunosorbent assay,ELISA)、T细胞体外增殖等实验,体外评价该TCR-T的免疫杀伤活性和脱靶-交叉反应性;通过体内实验评价该TCR-T的抑瘤效果、安全性等指标。结果: 获得了能特异性识别HLA-A*11:01限制性KRAS G12V8-16表位的高亲和力TCR序列KVA11-01。KVA11-01 TCR-T能够显著杀伤体外过表达HLA-A*11:01和KRAS G12V的多种肿瘤细胞。非特异杀伤实验显示,KVA11-01仅杀伤同时表达HLA-A*11:01和KRAS G12V的肿瘤细胞。体内抑瘤实验显示,KVA11-01 TCR-T可以显著抑制PANC-1和HeLa(体外过表达HLA-A*11:01和KRAS G12V)细胞裸鼠皮下移植瘤的生长。TCR-T细胞可以显著浸润至肿瘤组织内部,有良好的实体肿瘤归巢能力。结论: KVA11-01 TCR-T能够在体内外有效靶向并杀伤携带KRAS G12V突变的多种恶性肿瘤细胞,具有良好的实体瘤组织归巢能力,KVA11-01 TCR-T有望成为携带KRAS G12V突变的实体恶性肿瘤患者的有效治疗手段。

关键词: 肿瘤, 肿瘤浸润淋巴细胞, DNA突变分析, T细胞受体

Abstract:

Objective: KRAS gene is one of the most common mutations of proto-oncogenes in human tumors, G12V is one of the most common mutation types for KRAS. It's challenging to chemically acquire the targeted drug for this mutation. Recent studies reported that this mutation peptides can form a neoepitope for T cell recognition. Our study aims to clone the T cell receptor (TCR) which specifically recognizes the neoepitope for KRAS G12V mutation and constructs TCR engineered T cells (TCR-T), and to investigate if TCR-Ts have strong antitumor response ability. Methods: In this study, tumor infiltrating lymphocytes were obtained from one colorectal cancer patient carrying KRAS G12V mutation. Tumor-reactive TCR was obtained by single-cell RT-5′ rapid-amplification of cDNA ends PCR analysis and introduced into peripheral blood lymphocytes to generate TCR-Ts. Results: We obtained a high-affinity TCR sequence that specifically recognized the HLA-A*11:01-restricted KRAS G12V8-16 epitope: KVA11-01. KVA11-01 TCR-T could significantly kill various tumor cells such as PANC-1, SW480 and HeLa (overexpressing HLA-A*11:01 and KRAS G12V), and secreting high levels of interferon-γ (IFN-γ). Non-specific killing experiments suggested KVA11-01 specifically recognized tumor cells expressing both mutant KRAS G12V and HLA-A*11:01. In vivo assay, tumor inhibition experiments demonstrated that infusion of approximately 1E7 KVA11-01 TCR-T could significantly inhibit the growth of subcuta-neously transplanted tumors of PANC-1 and HeLa (overexpressing HLA-A*11:01 and KRAS G12V) cells in nude mice. No destruction of the morphologies of the liver, spleen and brain were observed. We also found that KVA11-01 TCR-T could significantly infiltrate into tumor tissue and had a better homing ability. Conclusion: KVA11-01 TCR-T cells can effectively target a variety of malignant tumor cells carrying KRAS G12V mutation through in vitro and in vivo assay. KVA11-01 TCR-T cells have excellent biological activity, high specificity of target antigen and homing ability into solid tumor tissue. KVA11-01 TCR-T is expected to be an effective treatment for patients with KRAS G12V mutant solid malignancies.

Key words: Neoplasms, Tumor-infiltrating lymphocytes, DNA mutational analysis, T-cell receptor

中图分类号: 

  • R730.51

图1

从肿瘤浸润淋巴细胞中克隆KVA11-01并构建其对应表达载体"

表1

KVA11-01与TK34 TCR的信息对比"

TCR KVA11-01 TK34
HLA HLA-A*11:01 HLA-A*11:01
KRAS G12V specificity VVGAVGVGK VVGAVGVGK
TCR V alpha TRAV8-3*01/TRAJ4*01 TRAV3-3*01/TRAJ7*01
TCR V beta TRBV7-8*01/TRBD1*01/TRBJ1-3*01 TRBV4*01/TRBD2*01/TRBJ2-1*01

图2

KAV11-01和TK34 TCR亲和力及表达模式的比较"

图3

KVA11-01 TCR-T对抗原阳性肿瘤细胞的特异性杀伤"

图4

评估KVA11-01的脱靶-交叉反应与同种异体反应"

图5

KVA11-01 TCR-T的体内抗肿瘤活性"

1 Bos JL . Ras oncogenes in human cancer: A review[J]. Cancer Res, 1989, 49 (17): 4682- 4689.
2 Singh H , Longo DL , Chabner BA . Improving prospects for targeting RAS[J]. J Clin Oncol, 2015, 33 (31): 3650- 3659.
doi: 10.1200/JCO.2015.62.1052
3 Hobbs GA , Der CJ , Rossman KL . RAS isoforms and mutations in cancer at a glance[J]. J Cell Sci, 2016, 129 (7): 1287- 1292.
4 Windon AL , Loaiza-Bonilla A , Jensen CE , et al. A KRAS wild type mutational status confers a survival advantage in pancreatic ductal adenocarcinoma[J]. J Gastrointest Oncol, 2018, 9 (1): 1- 10.
doi: 10.21037/jgo.2017.10.14
5 Shin SH , Kim SC , Hong SM , et al. Genetic alterations of K-ras, p53, c-erbB-2, and DPC4 in pancreatic ductal adenocarcinoma and their correlation with patient survival[J]. Pancreas, 2013, 42 (2): 216- 222.
doi: 10.1097/MPA.0b013e31825b6ab0
6 Bournet B , Muscari F , Buscail C , et al. KRAS G12D mutation subtype is a prognostic factor for advanced pancreatic adenocarcinoma[J]. Clin Transl Gastroenterol, 2016, 7 (3): e157.
doi: 10.1038/ctg.2016.18
7 Haas M , Ormanns S , Baechmann S , et al. Extended RAS analysis and correlation with overall survival in advanced pancreatic cancer[J]. Br J Cancer, 2017, 116 (11): 1462- 1469.
doi: 10.1038/bjc.2017.115
8 Marabese M , Ganzinelli M , Garassino MC , et al. KRAS mutations affect prognosis of non-small-cell lung cancer patients treated with first-line platinum containing chemotherapy[J]. Oncotarget, 2015, 6 (32): 34014- 34022.
doi: 10.18632/oncotarget.5607
9 Laghi L , Orbetegli O , Bianchi P , et al. Common occurrence of multiple KRAS mutations in pancreatic cancers with associated precursor lesions and in biliary cancers[J]. Oncogene, 2002, 21 (27): 4301- 4306.
doi: 10.1038/sj.onc.1205533
10 Russo AL , Borger DR , Szymonifka J , et al. Mutational analysis and clinical correlation of metastatic colorectal cancer[J]. Can-cer, 2014, 120 (10): 1482- 1490.
11 Tran E , Ahmadzadeh M , Lu YC , et al. Immunogenicity of soma-tic mutations in human gastrointestinal cancers[J]. Science, 2015, 350 (6266): 1387- 1390.
doi: 10.1126/science.aad1253
12 Chatani PD , Yang JC . Mutated RAS. Targeting the "untargetable" with T cells[J]. Clin Cancer Res, 2020, 26 (3): 537- 544.
doi: 10.1158/1078-0432.CCR-19-2138
13 Tran E , Robbins PF , Lu YC , et al. T-cell transfer therapy targeting mutant KRAS in cancer[J]. N Engl J Med, 2016, 375 (23): 2255- 2262.
doi: 10.1056/NEJMoa1609279
14 Leidner R , Sanjuan Silva N , Huang H , et al. Neoantigen T-cell receptor gene therapy in pancreatic cancer[J]. N Engl J Med, 2022, 386 (22): 2112- 2119.
doi: 10.1056/NEJMoa2119662
15 Wang QJ , Yu Z , Griffith K , et al. Identification of T-cell receptors targeting KRAS-mutated human tumors[J]. Cancer Immunol Res, 2015, 4 (3): 204- 214.
16 Sim MJW , Lu J , Spencer M , et al. High-affinity oligoclonal TCRs define effective adoptive T cell therapy targeting mutant KRAS-G12D[J]. Proc Natl Acad Sci USA, 2020, 117 (23): 12826- 12835.
doi: 10.1073/pnas.1921964117
17 Cohen CJ , Zhao Y , Zheng Z , et al. Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability[J]. Cancer Res, 2006, 66 (17): 8878- 8886.
doi: 10.1158/0008-5472.CAN-06-1450
18 Morgan RA , Chinnasamy N , Abate-Daga D , et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy[J]. J Immunother, 2013, 36 (2): 133- 151.
doi: 10.1097/CJI.0b013e3182829903
19 Linette GP , Stadtmauer EA , Maus MV , et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma[J]. Blood, 2013, 122 (6): 863- 871.
doi: 10.1182/blood-2013-03-490565
20 Cameron BJ , Gerry AB , Dukes J , et al. Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells[J]. Sci Transl Med, 2013, 5 (197): 103- 126.
21 Suchin EJ , Langmuir PB , Palmer E , et al. Quantifying the frequency of alloreactive T cells in vivo: New answers to an old question[J]. J Immunol, 2001, 166 (2): 973- 981.
doi: 10.4049/jimmunol.166.2.973
22 Li J , Li W , Huang K , et al. Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward[J]. J Hematol Oncol, 2018, 11 (1): 22.
doi: 10.1186/s13045-018-0568-6
23 Idorn M , Skadborg SK , Kellermann L , et al. Chemokine receptor engineering of T cells with CXCR2 improves homing towards subcutaneous human melanomas in xenograft mouse model[J]. Oncoimmunology, 2018, 7 (8): e1450715.
24 Draper LM , Kwong ML , Gros A , et al. Targeting of HPV-16+ epithelial cancer cells by TCR gene engineered T cells directed against E6[J]. Clin Cancer Res, 2015, 21 (19): 4431- 4439.
doi: 10.1158/1078-0432.CCR-14-3341
25 Karapetis CS , Khambata-Ford S , Jonker DJ , et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer[J]. N Engl J Med, 2008, 359 (17): 1757- 1765.
doi: 10.1056/NEJMoa0804385
26 Moore AR , Rosenberg SC , McCormick F , et al. RAS-targeted therapies: Is the undruggable drugged?[J]. Nat Rev Drug Discov, 2020, 19 (8): 533- 552.
doi: 10.1038/s41573-020-0068-6
[1] 张波. 弥漫性神经内分泌细胞肿瘤病理学:共性与异质性[J]. 北京大学学报(医学版), 2023, 55(2): 210-216.
[2] 周桥. 肿瘤病理学研究的进展和展望[J]. 北京大学学报(医学版), 2023, 55(2): 201-209.
[3] 梁丽,李鑫,农琳,董颖,张继新,李东,李挺. 子宫内膜癌微卫星不稳定性分析: 微小微卫星变换的意义[J]. 北京大学学报(医学版), 2023, 55(2): 254-261.
[4] 赖玉梅,李忠武,李欢,吴艳,时云飞,周立新,楼雨彤,崔传亮. 68例肛管直肠黏膜黑色素瘤临床病理特征及预后[J]. 北京大学学报(医学版), 2023, 55(2): 262-269.
[5] 杨菁,杜娟,王玉湘,刘从容. JAK/STAT信号通路在卵巢高级别浆液性癌中的激活及预后意义[J]. 北京大学学报(医学版), 2023, 55(2): 270-275.
[6] 侯卫华,宋书杰,石中月,金木兰. 幽门螺杆菌阴性早期胃癌的临床病理特征[J]. 北京大学学报(医学版), 2023, 55(2): 292-298.
[7] 农琳,王微,梁丽,李东,李鑫,李挺. 母细胞性浆样树突细胞肿瘤13例临床病理学特征[J]. 北京大学学报(医学版), 2023, 55(2): 308-314.
[8] 曹芳,钟明,刘从容. 宫体POLE突变型内膜样癌合并HPV感染相关性宫颈腺癌1例报道及文献回顾[J]. 北京大学学报(医学版), 2023, 55(2): 370-374.
[9] 熊焰,张波,聂立功,吴世凯,赵虎,李东,邸吉廷. 胸部SMARCA4缺失性未分化肿瘤的病理诊断与联合免疫检测点抑制剂治疗[J]. 北京大学学报(医学版), 2023, 55(2): 351-356.
[10] 柯杨,王敏敏,刘萌飞,刘芳芳,刘英,何忠虎. 肿瘤早期预警生物标志物的研究与思考[J]. 北京大学学报(医学版), 2022, 54(5): 810-813.
[11] 张宁,杨慧,王鹏. 类器官在癌症研究、药物筛选与精准诊疗中的应用进展[J]. 北京大学学报(医学版), 2022, 54(5): 814-821.
[12] 王跃,张爽,张虹,梁丽,徐玲,程元甲,段学宁,刘荫华,李挺. 激素受体阳性/人表皮生长因子受体2阴性乳腺癌临床病理特征及预后[J]. 北京大学学报(医学版), 2022, 54(5): 853-862.
[13] 刘京,陆爱东,左英熹,吴珺,黄志卓,贾月萍,丁明明,张乐萍,秦炯. 儿童急性淋巴细胞白血病合并癫痫发作75例临床特征和预后分析[J]. 北京大学学报(医学版), 2022, 54(5): 948-953.
[14] 潘佳忻,朱赛楠,李双玲,王东信. 副肿瘤性天疱疮合并实体肿瘤的危重症患者术后远期结局的影响因素[J]. 北京大学学报(医学版), 2022, 54(5): 981-990.
[15] 张力,龚继芳,潘宏铭,白玉贤,刘天舒,程颖,陈亚池,黄佳莹,许婷婷,葛飞娇,许婉玲,施佳,胡夕春,沈琳. 阿替利珠单抗治疗中国晚期实体瘤患者的开放标签Ⅰ期临床试验[J]. 北京大学学报(医学版), 2022, 54(5): 971-980.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王军, 肖水芳, 秦永, 王全桂, 陈丽. 以面神经麻痹为首诊表现的Wegener肉芽肿病一例[J]. 北京大学学报(医学版), 2007, 39(4): 434 -436 .
[2] 柳晓辉, 那加, 刘玲玲, 罗斌. 头颈部血管肉瘤3例[J]. 北京大学学报(医学版), 2001, 33(3): 288 -289 .
[3] 张震康. 口腔医学科学研究的重要进展和方向[J]. 北京大学学报(医学版), 2002, 34(2): 97 -98 .
[4] 梁成, 王兴, 伊彪, 李自力, 王晓霞. 骨性颞下颌关节强直伴小颌畸形及阻塞性睡眠呼吸暂停综合征的牵引成骨治疗[J]. 北京大学学报(医学版), 2002, 34(2): 112 -116 .
[5] 张勇, 栾庆先. 牙周维护治疗在保持牙周长期疗效中的作用[J]. 北京大学学报(医学版), 2011, 43(1): 29 -33 .
[6] 夏永华, 刘冬, 张彩凤, 付丹丹, 李敏, 李占国, 田中伟. NF-κB信号通路的阻断对皮肤鳞癌SCL-1细胞凋亡的影响[J]. 北京大学学报(医学版), 2011, 43(2): 179 -182 .
[7] 孙宇, 刘毅强, 冯国双, 李吉友. 转化生长因子β1在萎缩性胃炎发生中的作用[J]. 北京大学学报(医学版), 2009, 41(6): 635 -639 .
[8] 张少衡, 贾竹青, 郭静萱, 张萍, 马康涛, 王淑玲, 刘永刚, 李凌松, 周春燕. 骨髓细胞移植上调血管内皮生长因子及其受体的表达并改善缺血心脏功能[J]. 北京大学学报(医学版), 2003, 35(4): 429 -433 .
[9] 李文海, 张建中. 二期梅毒皮疹中梅毒螺旋体基因检测和浸润细胞研究[J]. 北京大学学报(医学版), 2003, 35(5): 485 -487 .
[10] 李海霞, 屈晨雪, 徐国宾, 闫存玲, 张国华, 李传保, 王建中, 夏铁安. 检验科SARS标本检测安全管理介绍[J]. 北京大学学报(医学版), 2003, 35(z1): 92 -94 .