北京大学学报(医学版) ›› 2026, Vol. 58 ›› Issue (1): 10-21. doi: 10.19723/j.issn.1671-167X.2026.01.002

• 论著 • 上一篇    下一篇

miR-488-5p促进大鼠骨髓间充质干细胞成神经、成骨分化及神经化骨再生

曾立婷1, 程凯远1,2, 刘中宁1, 李健1, 杨静文1,*(), 姜婷1,*()   

  1. 1. 北京大学口腔医学院·口腔医院修复科, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 北京 100081
    2. 天津市口腔医院修复一科, 南开大学医学院, 天津市口腔功能重建重点实验室, 天津 300041
  • 收稿日期:2025-10-10 出版日期:2026-02-18 发布日期:2025-12-10
  • 通讯作者: 杨静文, 姜婷
  • 基金资助:
    国家自然科学基金(82170928); 国家自然科学基金(82201022)

miR-488-5p promotes osteogenic and neurogenic differentiation of rat bone marrow mesenchymal stem cells and enhances neuralized bone regeneration

Liting ZENG1, Kaiyuan CHENG1,2, Zhongning LIU1, Jian LI1, Jingwen YANG1,*(), Ting JIANG1,*()   

  1. 1. Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
    2. Department Ⅰ of Prosthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
  • Received:2025-10-10 Online:2026-02-18 Published:2025-12-10
  • Contact: Jingwen YANG, Ting JIANG
  • Supported by:
    the National Natural Science Foundation of China(82170928); the National Natural Science Foundation of China(82201022)

RICH HTML

  

摘要:

目的: 探讨miR-488-5p促进大鼠骨髓间充质干细胞(rat bone marrow mesenchymal stem cells, rBMSCs)成神经或成骨分化的作用, 以及对神经化骨再生的影响。方法: 体外诱导rBMSCs向成神经或成骨向分化, 实时荧光定量聚合酶链反应(quantitative real-time polymerase chain reaction, qRT-PCR)检测成神经或成骨分化过程中不同时间点(第0、2、4、7天)miR-488-5p的表达水平。建立miR-488-5p模拟物组、miR-488-5p抑制剂组以及各自的阴性对照组(negative control, NC)共四组, 分别探讨miR-488-5p对rBMSCs神经向分化及成骨向分化的影响。构建大鼠颅骨缺损模型(直径5 mm全层圆形临界骨缺损), 光固化甲基丙烯酰化明胶(gelatin methacryloyl, GelMA)负载rBMSCs形成以下四组并进行体内成骨实验: ①BLANK组: GelMA; ②BMSCs组: GelMA+rBMSCs; ③NC-BMSCs组: GelMA+转染miR-488-5p模拟物NC的rBMSCs; ④miR-488-5p-BMSCs组: GelMA+转染miR-488-5p模拟物的rBMSCs。术后4周和8周获取标本, 进行显微CT扫描及影像学骨参数分析, 并通过苏木精-伊红染色、Masson染色和神经特异性蛋白可溶性蛋白100(soluble protein-100, S100)组织免疫荧光染色, 评估缺损区神经化组织工程骨的生成效果。结果: 成功诱导rBMSCs向成神经或成骨向分化, 在rBMSCs成神经或成骨向分化过程中, miR-488-5p从第0天至第7天表达水平均显著升高。给予干预后, rBMSCs的模拟物组成神经相关基因及蛋白表达较其对照组增高, 抑制剂组则呈相反结果; 模拟物组的成骨相关基因及蛋白表达较其对照组增高, 碱性磷酸梅(alkaline phosphatase, ALP)染色及茜素红染色加深, ALP活性增强, 抑制剂组则呈相反结果。骨缺损动物模型结果显示, 术后4周和8周, BLANK组新生骨量最少, BMSCs组和NC-BMSCs组新生骨量居中且相近, miR-488-5p-BMSCs组新生骨量最多, 4周时miR-488-5p-BMSCs组骨矿物质密度[(0.63±0.05) g/cm3 vs. (0.51±0.03) g/cm3]、骨体积分数(33.17%±6.43% vs. 18.11%±1.52%)、骨表面积密度[(3.43±0.69) /mm vs. (2.46±0.20) /mm]及骨小梁数量[(0.92±0.21) /mm vs.(0.59±0.07) /mm]显著高于NC-BMSCs组, 8周时miR-488-5p-BMSCs组的骨矿物质密度[(0.80±0.04) g/cm3 vs. (0.68±0.04) g/cm3]、骨体积分数(56.69%±6.22% vs. 42.36%±3.86%)及新生骨周围被S100标记的神经细胞数量(46.33±4.04 vs. 26.00±3.61)显著高于NC-BMSCs组。结论: miR-488-5p同时具有促进rBMSCs成神经及成骨分化的作用, 并促进大鼠颅骨缺损神经化组织工程骨的形成。

关键词: miR-488-5p, 骨髓间充质干细胞, 成骨分化, 神经向分化, 神经-骨组织工程

Abstract:

Objective: To investigate the role of microRNA miR-488-5p, which showed increased expression after the disconnection of the inferior alveolar nerve, in promoting the osteogenic and neurogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs), as well as its effect on promoting the neuralized tissue engineered bone regeneration. Methods: rBMSCs were subjected to in vitro neural or osteogenic differentiation induction cultures. The expression levels of miR-488-5p at different time points (days 0, 2, 4, and 7) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). miR-488-5p overexpression or low expression in rBMSCs was achieved by transfection with miR-488-5p mimics or inhibitors. Four groups, the miR-488-5p mimics, the miR-488-5p inhibitor, and their respective negative controls (NC), were established to investigate the effects of miR-488-5p on the neural differentiation and osteogenic differentiation of rBMSCs.A 5 mm diameter, full-thickness circular critical bone defect was created in the rat calvaria. The rats were treated with light-cured gelatin methacryloyl (GelMA) seeded with rBMSCs. The rats were divided into four groups: ①BLANK group: GelMA; ②BMSCs group: GelMA + rBMSCs; ③NC-BMSCs group: GelMA + rBMSCs transfected with miR-488-5p mimics NC; and ④miR-488-5p-BMSCs group: GelMA + rBMSCs transfected with miR-488-5p mimics. Specimens were obtained 4 and 8 weeks after surgery, and micro-CT was performed to measure and analyze bone mineral density (BMD), bone volume/total volume (BV/TV), bone surface area/total volume (BS/TV) and trabecular number (Tb.N). The effects of neuralized tissue engineering bone formation in the defect area were assessed using Hematoxylin-Eosin (HE) staining, Masson staining, and tissue immunofluorescence staining of the nerve-specific protein soluble protein-100 (S100). Results: As rBMSCs progressed toward neural or osteogenic differentiation, miR-488-5p expression increased significantly from day 0 to day 7. Regarding neural differentiation, the mimics group showed increased expression of neural-related genes and proteins compared with the mimics NC group, while the opposite result was observed in the inhibitor group. As for osteogenic differentiation, the mimics group showed increased expression of osteogenic genes and proteins, more intense alkaline phosphatase (ALP) and alizarin red staining (ARS) staining, and enhanced ALP activity compared with the mimics NC group, while the opposite result was observed in the inhibitor group. 4 and 8 weeks after critical calvarial defect construction in rats, the BLANK group had the least amount of new bone formation, while the BMSCs group and the NC-BMSCs group had similar and intermediate amounts of new bone formation. The miR-488-5p-BMSCs group had the most new bone formation. At 4 weeks, the BMD [(0.63±0.05) g/cm3 vs. (0.51±0.03) g/cm3], BV/TV (33.17%±6.43% vs. 18.11%±1.52%), BS/TV [(3.43±0.69) /mm vs. (2.46±0.20) /mm], and Tb.N [(0.92±0.21) /mm vs.(0.59±0.07) /mm] in the miR-488-5p-BMSCs group were significantly higher than those in the NC-BMSCs group. At 8 weeks, the BMD [(0.80±0.04) g/cm3 vs. (0.68±0.04) g/cm3], BV/TV (56.69%±6.22% vs. 42.36%±3.86%), and the number of S100-labeled nerve cells around the new bone (46.33±4.04 vs. 26.00±3.61) in the miR-488-5p-BMSCs group was also significantly higher than that in the NC-BMSCs group. Conclusion: miR-488-5p promoted the osteogenic and neurogenic differentiation of rBMSCs and promoted the formation of neuralized tissue-engineered bone in rat calvarial defects.

Key words: miR-488-5p, Bone marrow mesenchymal stem cells, Osteogenic differentiation, Neurogenic differentiation, Neuro-bone tissue engineering

中图分类号: 

  • R68

表1

qRT-PCR引物序列"

Gene Forward primer (5′ to 3′) Reverse primer (5′ to 3′)
U6 CGCTTCGGCAGCACATATAC CGAATTTGCGTGTCATCCTT
miR-488-5p GGCACCCAGATAATGGCAC AGTGCAGGGTCCGAGGTATT
Gapdh AGGTCGGTGTGAACGGATTT GAACTTGCCGTGGGTAGAGT
*Map2 ACAGCAACAAGTGGTGAATCAG GGAGGATGGAGGAAGGTCTTG
*Ng2 TTCTCACACAGAGGAGCCC CACTCAAGCTCTGGCTGCT
*Tubb3 CAGATGCTGGCCATTCAGAGTAAG TGTTGCCGATGAAGGTGGAC
*Ngf TGCCAAGGACGCAGCTTTC TGAAGTTTAGTCCAGTGGGCTTCAG
*Nes TGAACAAGAGACCCAACAAACAC TTCCAAGAGGCTTCGGTAACT
*S100 CTGTCAAGAACCTGCTCCGA AGTGGGCATGGAACACATTGA
#Runx2 GCCTTCAAGGTTGTAGCCCT TGAACCTGGCCACTTGGTTT
#Alp CATGGTGAGTGACACGGACA CCATGACGTGGGGGATGTAG
#Ocn CCGTTTAGGGCATGTGTTGC TTTCGAGGCAGAGAGAGGGA
#Bmp2 CGGGAACAAATGCAGGAAGC AAGGACATTCCCCATGGCAG
#Col1a1 CCCCAGCCGCAAAGAGTCTA CAGCTGACTTCAGGGATGTCTTC
#Opn CCAGCCAAGGACCAACTACA AGTGTTTGCTGTAATGCGCC

图1

miR-488-5p促进rBMSCs神经向分化"

图2

miR-488-5p促进rBMSCs成骨向分化"

图3

大鼠颅骨缺损术后4周和8周micro-CT影像学分析"

图4

大鼠颅骨缺损术后4周和8周组织形态学分析"

1
Sun W, Ye B, Chen S, et al. Neuro-bone tissue engineering: Emerging mechanisms, potential strategies, and current challenges[J]. Bone Res, 2023, 11(1): 65.

doi: 10.1038/s41413-023-00302-8
2
Liu S, Liu S, Li S, et al. Nerves within bone and their application in tissue engineering of bone regeneration[J]. Front Neurol, 2022, 13, 1085560.
3
Zhao X, Yao M, Wang Y, et al. Neuroregulation during bone formation and regeneration: mechanisms and strategies[J]. ACS Appl Mater Interfaces, 2025, 17(5): 7223- 7250.

doi: 10.1021/acsami.4c16786
4
Jones RE, Salhotra A, Robertson KS, et al. Skeletal stem cell-Schwann cell circuitry in mandibular repair[J]. Cell Rep, 2019, 28(11): 2757. e5- 2766. e5.
5
Zhang X, Jiang X, Jiang S, et al. Schwann cells promote prevascularization and osteogenesis of tissue-engineered bone via bone marrow mesenchymal stem cell-derived endothelial cells[J]. Stem Cell Res Ther, 2021, 12, 382.

doi: 10.1186/s13287-021-02433-3
6
Fitzpatrick V, Moldes ZM, Deck A, et al. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization[J]. Biomaterials, 2021, 276, 120995.

doi: 10.1016/j.biomaterials.2021.120995
7
Zhang Z, Wang F, Huang X, et al. Engineered sensory nerve guides self-adaptive bone healing via NGF-TrkA signaling pathway[J]. Adv Sci (Weinh), 2023, 10(10): 2206155.

doi: 10.1002/advs.202206155
8
Heng BC, Bai Y, Li X, et al. Electroactive biomaterials for facilitating bone defect repair under pathological conditions[J]. Adv Sci (Weinh), 2022, 10(2): 2204502.
9
Deng L, Hou M, Lv N, et al. Melatonin-encapsuled silk fibroin electrospun nanofibers promote vascularized bone regeneration through regulation of osteogenesis-angiogenesis coupling[J]. Mater Today Bio, 2024, 25, 100985.

doi: 10.1016/j.mtbio.2024.100985
10
Zhao W, Zhang S, Wang B, et al. Runx2 and microRNA regulation in bone and cartilage diseases[J]. Ann N Y Acad Sci, 2016, 1383(1): 80- 87.

doi: 10.1111/nyas.13206
11
Fang S, Deng Y, Gu P, et al. microRNAs regulate bone development and regeneration[J]. Int J Mol Sci, 2015, 16(4): 8227- 8253.

doi: 10.3390/ijms16048227
12
Liu J, Dang L, Wu X, et al. microRNA-mediated regulation of bone remodeling: A brief review[J]. JBMR Plus, 2019, 3(9): 10213.

doi: 10.1002/jbm4.10213
13
Nguyen LH, Diao HJ, Chew SY. MicroRNAs and their potential therapeutic applications in neural tissue engineering[J]. Adv Drug Deliv Rev, 2015, 88, 53- 66.

doi: 10.1016/j.addr.2015.05.007
14
Li YK, Zhang YY, Lin J, et al. Metabotropic glutamate receptor 5-mediated inhibition of inward-rectifying K+ channel 4.1 contributes to orofacial ectopic mechanical allodynia following inferior alveolar nerve transection in male mice[J]. J Neurosci Res, 2023, 101(7): 1170- 1187.

doi: 10.1002/jnr.25181
15
Lee J, Ohara K, Shinoda M, et al. Involvement of satellite cell activation via nitric oxide signaling in ectopic orofacial hypersensitivity[J]. Int J Mol Sci, 2020, 21(4): 1252.

doi: 10.3390/ijms21041252
16
Xu Y, Xia M, Chen T, et al. Inferior alveolar nerve transection disturbs innate immune responses and bone healing after tooth extraction[J]. Ann N Y Acad Sci, 2019, 1448(1): 52- 64.

doi: 10.1111/nyas.14120
17
程凯远, 张美子, 刘中宁, 等. 下牙槽神经离断对下颌骨骨质和拔牙创愈合的影响研究[J]. 口腔颌面修复学杂志, 2025, 26(2): 105- 115.
18
Wan QQ, Qin WP, Ma YX, et al. Crosstalk between bone and nerves within bone[J]. Adv Sci (Weinh), 2021, 8(7): 2003390.

doi: 10.1002/advs.202003390
19
Zhou S, Shen D, Wang Y, et al. microRNA-222 Targeting PTEN promotes neurite outgrowth from adult dorsal root ganglion neurons following sciatic nerve transection[J]. PLoS One, 2012, 7(9): 44768.

doi: 10.1371/journal.pone.0044768
20
Lei L, Liu Z, Yuan P, et al. Injectable colloidal hydrogel with mesoporous silica nanoparticles for sustained co-release of micro-RNA-222 and aspirin to achieve innervated bone regeneration in rat mandibular defects[J]. J Mater Chem B, 2019, 7(16): 2722- 2735.

doi: 10.1039/C9TB00025A
21
Qiu J, Wu S, Wang P, et al. miR-488-5p mitigates hepatic stellate cell activation and hepatic fibrosis via suppressing TET3 expression[J]. Hepatol Int, 2022, 17(2): 463- 475.
22
Li X, Yue X, Pastor WA, et al. Tet proteins influence the balance between neuroectodermal and mesodermal fate choice by inhibiting Wnt signaling[J]. Proc Natl Acad Sci USA, 2016, 113(51): E8267- E8276.
23
Ye W, Zhang C, Fan Z. MiR-26b-5p/TET3 regulates the osteogenic differentiation of human bone mesenchymal stem cells and bone reconstruction in female rats with calvarial defects[J]. Mol Biol Rep, 2024, 51(1): 632.

doi: 10.1007/s11033-024-09577-4
24
Leo AJ, Grande DA. Mesenchymal stem cells in tissue engineering[J]. Cells Tissues Organs, 2006, 183(3): 112- 122.

doi: 10.1159/000095985
25
Liu Y, Peng L, Li L, et al. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model[J]. Biomaterials, 2021, 279, 121216.

doi: 10.1016/j.biomaterials.2021.121216
26
Yu H, Luo X, Li Y, et al. Advanced hybrid strategies of GelMA composite hydrogels in bone defect repair[J]. Polymers (Basel), 2024, 16(21): 3039.

doi: 10.3390/polym16213039
27
Zhou B, Jiang X, Zhou X, et al. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: Therapeutic strategies and recent advances[J]. Biomater Res, 2023, 27(1): 86.

doi: 10.1186/s40824-023-00422-6
28
Mamidi N, Ijadi F, Norahan MH. Leveraging the recent advancements in GelMA scaffolds for bone tissue engineering: An assessment of challenges and opportunities[J]. Biomacromolecules, 2024, 25(4): 2075- 2113.

doi: 10.1021/acs.biomac.3c00279
29
丁梦, 李强, 李筱叶, 等. 光固化水凝胶负载骨髓间充质干细胞修复大鼠颅骨缺损[J]. 口腔疾病防治, 2024, 32(5): 330- 340.
30
Ai Y, Dai F, Li W, et al. Photo-crosslinked bioactive BG/BMSCs@GelMA hydrogels for bone-defect repairs[J]. Mater Today Bio, 2023, 23, 100882.

doi: 10.1016/j.mtbio.2023.100882
31
Sekido D, Otsuka T, Shimazaki T, et al. Comparison of cerebral cortex activation induced by tactile stimulation between natural teeth and implants[J]. J Clin Exp Dent, 2020, 12(11): 1021- 1026.
[1] 李梦迪, 雷蕾, 刘中宁, 李健, 姜婷. siRNA沉默NLK基因促进神经化组织工程骨再生[J]. 北京大学学报(医学版), 2025, 57(2): 227-236.
[2] 盛春辉, 张晓, 吕珑薇, 周永胜. 人脂肪间充质干细胞外泌体对去势小鼠骨质疏松的预防[J]. 北京大学学报(医学版), 2025, 57(2): 217-226.
[3] 胡轶博, 吕伟佳, 夏炜, 刘亦洪. 基于细胞生长与成骨分化的不同孔径生物支架流体力学有限元分析[J]. 北京大学学报(医学版), 2025, 57(1): 97-105.
[4] 帅婷, 郭艳艳, 林春平, 侯晓玫, 金婵媛. 敲减NPTX1促进人骨髓间充质干细胞成骨分化[J]. 北京大学学报(医学版), 2025, 57(1): 7-12.
[5] 帅婷,刘娟,郭艳艳,金婵媛. 敲减长链非编码RNA MIR4697HG抑制骨髓间充质干细胞成脂向分化[J]. 北京大学学报(医学版), 2022, 54(2): 320-326.
[6] 尤鹏越,刘玉华,王新知,王思雯,唐琳. 脱细胞猪心包膜生物相容性及成骨性能的体内外评价[J]. 北京大学学报(医学版), 2021, 53(4): 776-784.
[7] 谢静,赵玉鸣,饶南荃,汪晓彤,方滕姣子,李晓霞,翟越,李静芝,葛立宏,王媛媛. 3种口腔颌面部来源的间充质干细胞成血管内皮分化潜能的比较研究[J]. 北京大学学报(医学版), 2019, 51(5): 900-906.
[8] 刘霞,李英妮,孙晓麟,彭清林,卢昕,王国春. 去整合素金属蛋白酶对成骨分化的影响[J]. 北京大学学报(医学版), 2018, 50(6): 962-967.
[9] 朱云艳,李倩,张怡美,周彦恒. MAPK和AKT磷酸化下调参与Toll样受体抑制的人牙周膜干细胞的成骨分化[J]. 北京大学学报(医学版), 2018, 50(1): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!