北京大学学报(医学版) ›› 2021, Vol. 53 ›› Issue (5): 843-849. doi: 10.19723/j.issn.1671-167X.2021.05.006

• 论著 • 上一篇    下一篇

基于磁共振的青年男性股四头肌的测量和评估

吴一凡,张晓圆,任爽,玉应香,常翠青()   

  1. 北京大学第三医院运动医学科,北京大学运动医学研究所,运动医学关节伤病北京市重点实验室,北京 100191
  • 收稿日期:2021-06-04 出版日期:2021-10-18 发布日期:2021-10-11
  • 通讯作者: 常翠青 E-mail:changcuiqing@126.com
  • 基金资助:
    国家重点研发计划项目(2019YFF0301700);国家体育总局重点研究项目(2014B003)

Measurement and evaluation of the quadriceps muscle mass in young men based on magnetic resonance imaging

WU Yi-fan,ZHANG Xiao-yuan,REN Shuang,YU Ying-xiang,CHANG Cui-qing()   

  1. Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
  • Received:2021-06-04 Online:2021-10-18 Published:2021-10-11
  • Contact: Cui-qing CHANG E-mail:changcuiqing@126.com

RICH HTML

  

摘要:

目的: 通过观测髌骨上缘不同水平位置股四头肌横截面积(cross-sectional area,CSA)与体积(quadriceps muscle volume,QMV)的相关性,探讨评估股四头肌肌肉参数的最佳测量位置。方法: 对22例单侧前交叉韧带(anterior cruciate ligament,ACL)断裂男性患者行双侧大腿磁共振成像检查,患者平均年龄(29±6)岁,分别选取髌骨上缘18、15和12 cm处,利用半自动分割和医学影像处理软件确定QMV和各水平位置CSA。通过拟合回归方程建立模型估计QMV,采用Bland-Altman分析评价两者之间的一致性。结果: 受试者健侧QMV平均为(1 944.45±323.77) cm3。髌骨上缘18、15和12 cm处的股四头肌CSA分别为(80.80±12.16) cm2、(77.53±12.03) cm2和(72.68±10.51) cm2,拟合方程R2分别为0.819、0.755、0.684(P均<0.001),QMV估计值的标准误(standard error of the estimate,SEE)分别为7.4%、8.7%、9.8%(以体积的百分比表示)。三个水平位置的拟合方程均较好,但以髌骨上缘18 cm处的拟合度最高。Bland-Altman散点图结果显示,髌骨上缘18、15和12 cm处的QMV差值平均值分别为0.8 cm3、-1.1 cm3、0.9 cm3,95%一致性界限分别为(-268.8, 270.5)、(-315.2, 313.1)、(-355.7, 357.5),髌骨上缘18 cm处QMV的估计值与实测值一致性最好,患侧与健侧结果一致。结论: 以髌骨上缘作为基线探讨青年男性QMV与CSA的相关性具有可靠性和一致性,其中以髌骨上缘18 cm处的股四头肌CSA与QMV的相关性最好,但对于股四头肌的不同损伤部位,可选择不同观测位置。

关键词: 磁共振成像, 股四头肌, 横截面积, 测量

Abstract:

Objective: To investigate the correlation between the quadriceps cross-sectional area (CSA) and quadriceps muscle volume (QMV) at different horizontal levels from the upper edge of the patella, and to determine the best observation position. Methods: Thigh magnetic resonance imaging (MRI) images of 22 Chinese young men [age: (29±6) years] with anterior cruciate ligament (ACL) rupture were examined. The CSA was measured at 18, 15, and 12 cm above the upper edge of the pate-lla (denoted by CSA-18, CSA-15 and CSA-12 respectively), and the QMV and CSA were determined by semiautomatic segmentation. A curve model was established to estimate QMV. Bland-Altman analysis was performed to determine the confidence limits of the volumes. Results: On the unaffected side, the mean QMV was (1 944.45±323.77) cm3. The quadriceps CSA at the upper edge of the patella at 18, 15, and 12 cm was (80.80±12.16) cm2, (77.53±12.03) cm2, and (72.68±10.51) cm2, respectively. The coefficients of determination (R2), ascertained using curve estimation models, for the 3 positions were 0.819, 0.755, and 0.684 (P<0.001), and the standard deviations of the volume estimated value (SEE) were 7.4%, 8.7%, and 9.8%. The fitting equations of the three horizontal positions were all good, but the fitting degree of CSA-18 was the highest. The Bland-Altman scatter plot showed that the arithmetic means of the QMV at 18, 15 and 12 cm from the upper edge of the patella 0.8 cm3, -1.1 cm3, and 0.9 cm3 and 95% limits of agreement (LoA) were (-268.8, 270.5), (-315.2, 313.1), and (-355.7, 357.5), respectively. The estimated QMV was in good agreement with the measured value. The difference between the estimated CSA-18 and measured values was the smallest. The results on the affected side were consistent. Conclusion: The correlation between QMV and CSA in the young men with the upper edge of patella as baseline was reliable and consistent. Among them, CSA-18 had the highest correlation with the QMV. However, different observation sites could be selected for different injuries of the quadriceps.

Key words: Magnetic resonance imaging, Quadriceps muscle, Cross-sectional area, Measurement

中图分类号: 

  • R873

图1

图像分析软件中的受试者MRI图像"

表1

股四头肌横截面积(n=22, x ?±s)"

Items CSA of quadriceps/cm2 F value P value
CSA-18 CSA-15 CSA-12
Unaffected side
Quadriceps 80.80±12.16 77.53±12.03 72.68±10.51 92.876 <0.001
RF 9.53±2.36 7.01±1.67 3.66±1.28 209.987 <0.001
VM 14.97±3.46 20.09±4.51 23.04±4.90 336.556 <0.001
VL 28.71±4.93 25.84±4.71 22.06±3.85 121.180 <0.001
VI 27.59±4.58 24.60±4.11 21.19±3.95 132.113 <0.001
Affected side
Quadriceps 73.79±15.83 71.16±15.25 66.41±14.02 58.739 <0.001
RF 9.49±2.34 7.05±1.86 4.24±1.19 226.089 <0.001
VM 13.43±3.89 17.78±4.37 22.29±5.46 239.172 <0.001
VL 26.07±6.73 23.63±5.90 20.23±5.35 58.258 <0.001
VI 24.80±5.10 22.70±5.08 19.64±4.48 101.731 <0.001

表2

CSA与QMV、身高、体质量之间的相关性分析"

Items Unaffected side Affected side
r R2 P value r R2 P value
QMV
CSA-18 0.891 0.793 <0.001 0.953 0.909 <0.001
CSA-15 0.843 0.711 <0.001 0.926 0.857 <0.001
CSA-12 0.808 0.652 <0.001 0.904 0.818 <0.001
Height 0.404 0.163 0.062 0.447 0.199 0.037
Weight 0.705 0.497 <0.001 0.658 0.433 0.001
Height
CSA-18 0.135 0.018 0.548 0.247 0.061 0.268
CSA-15 0.058 0.003 0.796 0.197 0.039 0.378
CSA-12 -0.025 0.001 0.912 0.196 0.038 0.383
Weight
CSA-18 0.657 0.432 0.001 0.571 0.326 0.005
CSA-15 0.597 0.357 0.003 0.567 0.322 0.006
CSA-12 0.509 0.259 0.016 0.508 0.258 0.016

表3

QMV的曲线拟合模型"

R2 SEE F value P value Constant b1 b2
Unaffected side
CSA-18 0.819 144.64 43.111 <0.001 -2 221.800 79.618 -0.340
CSA-15 0.755 168.51 29.265 <0.001 -2 506.692 92.559 -0.443
CSA-12 0.684 191.29 20.580 <0.001 -2 311.765 93.240 -0.468
Affected side
CSA-18 0.923 123.05 114.104 <0.001 -1 423.204 62.000 -0.247
CSA-15 0.883 151.52 72.009 <0.001 -1 766.642 75.312 -0.349
CSA-12 0.871 159.67 63.904 <0.001 -1 992.903 87.521 -0.451

表4

QMV的实测值和估计值(n=22, x ?±s)"

QMV Unaffected side Affected side
Measured value/cm3 1 944.45±323.77 1 747.36±422.18
Estimated value of CSA-18/cm3 1 943.62±292.85 1 747.76±405.79
Estimated value of CSA-15/cm3 1 945.52±281.62 1 747.83±396.99
Estimated value of CSA-12/cm3 1 943.54±267.56 1 745.81±393.31

图2

QMV的曲线模型建立(A~C,健侧;D~F,患侧)"

图3

QMV实测值和估计值的Bland-Altman散点图(A~C,健侧;D~F,患侧)"

[1] Francis P, Lyons M, Piasecki M, et al. Measurement of muscle health in aging [J]. Biogerontology, 2017, 18(6):901-911.
doi: 10.1007/s10522-017-9697-5 pmid: 28378095
[2] Leenders M, Verdijk LB, van der Hoeven L, et al. Prolonged leucine supplementation does not augment muscle mass or affect glycemic control in elderly type 2 diabetic men [J]. J Nutr, 2011, 141(6):1070-1076.
doi: 10.3945/jn.111.138495 pmid: 21525248
[3] Wang SY, Shamliyan TA, Talley KM, et al. Not just specific diseases: Systematic review of the association of geriatric syndromes with hospitalization or nursing home admission [J]. Arch Gerontol Geriatr, 2013, 57(1):16-26.
doi: 10.1016/j.archger.2013.03.007
[4] Cai W, Gao L, Li L, et al. Epidemiology of physical activity-related injuries in Chinese university students [J]. Scand J Med Sci Sports, 2019, 29(9):1331-1339.
doi: 10.1111/sms.v29.9
[5] Gao Y, Cai W, Gao L, et al. Physical activity-related injuries among university students: A multicentre cross-sectional study in China [J]. BMJ Open, 2018, 8(9):e021845.
doi: 10.1136/bmjopen-2018-021845
[6] Birchmeier T, Lisee C, Kane K, et al. Quadriceps muscle size following ACL injury and reconstruction: A systematic review [J]. J Orthop Res, 2020, 38(3):598-608.
doi: 10.1002/jor.24489 pmid: 31608490
[7] Lindstrom M, Strandberg S, Wredmark T, et al. Functional and muscle morphometric effects of ACL reconstruction. A prospective CT study with 1 year follow-up [J]. Scand J Med Sci Sports, 2013, 23(4):431-442.
doi: 10.1111/sms.2013.23.issue-4
[8] Williams GN, Snyder-Mackler L, Barrance PJ, et al. Quadriceps femoris muscle morphology and function after ACL injury: A diffe-rential response in copers versus non-copers [J]. J Biomech, 2005, 38(4):685-693.
pmid: 15713288
[9] Young A, Stokes M, Crowe M. The size and strength of the qua-driceps muscles of old and young men [J]. Clin Physiol, 1985, 5(2):145-154.
pmid: 3888498
[10] Thomas AC, Wojtys EM, Brandon C, et al. Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction [J]. J Sci Med Sport, 2016, 19(1):7-11.
doi: 10.1016/j.jsams.2014.12.009 pmid: 25683732
[11] Pons C, Borotikar B, Garetier M, et al. Quantifying skeletal muscle volume and shape in humans using MRI: A systematic review of validity and reliability [J]. PLoS One, 2018, 13(11):e0207847.
doi: 10.1371/journal.pone.0207847
[12] Barnouin Y, Butler-Browne G, Voit T, et al. Manual segmentation of individual muscles of the quadriceps femoris using MRI: A reappraisal [J]. J Magn Reson Imaging, 2014, 40(1):239-247.
doi: 10.1002/jmri.24370 pmid: 24615897
[13] Holzbaur KR, Murray WM, Gold GE, et al. Upper limb muscle volumes in adult subjects [J]. J Biomech, 2007, 40(4):742-749.
doi: 10.1016/j.jbiomech.2006.11.011
[14] Mersmann F, Bohm S, Schroll A, et al. Muscle shape consistency and muscle volume prediction of thigh muscles [J]. Scand J Med Sci Sports, 2015, 25(2):e208-e213.
doi: 10.1111/sms.2015.25.issue-2
[15] Strandberg S, Wretling ML, Wredmark T, et al. Reliability of computed tomography measurements in assessment of thigh muscle cross-sectional area and attenuation [J]. BMC Med Imaging, 2010(10):18.
[16] 甄希成, 陈新, 白巍. 传统按摩结合持续被动运动训练对脑卒中患者股四头肌横截面积的影响研究 [J]. 中国全科医学, 2012, 15(29):3366-3368.
[17] Morse CI, Degens H, Jones DA. The validity of estimating quadriceps volume from single MRI cross-sections in young men [J]. Eur J Appl Physiol, 2007, 100(3):267-274.
doi: 10.1007/s00421-007-0429-4
[18] Zhang X, Huang H, Yu Y, et al. Impact of whey protein isolate and eccentric training on quadriceps mass and strength in patients with anterior cruciate ligament rupture: A randomized controlled trial [J]. J Rehabil Med, 2020, 52(3):jrm00035.
[19] Marcon M, Ciritsis B, Laux C, et al. Cross-sectional area mea-surements versus volumetric assessment of the quadriceps femoris muscle in patients with anterior cruciate ligament reconstructions [J]. Eur Radiol, 2015, 25(2):290-298.
doi: 10.1007/s00330-014-3424-2 pmid: 25358592
[20] Strandberg S, Lindstrom M, Wretling ML, et al. Muscle morphometric effect of anterior cruciate ligament injury measured by computed tomography: Aspects on using non-injured leg as control [J]. BMC Musculoskelet Disord, 2013(14):150.
[21] Yang YX, Chong MS, Lim WS, et al. Validity of estimating muscle and fat volume from a single MRI section in older adults with sarcopenia and sarcopenic obesity [J]. Clin Radiol, 2017, 72(5):427.e9-427.e14.
[22] Yamauchi K, Yoshiko A, Suzuki S, et al. Estimation of indivi-dual thigh muscle volumes from a single-slice muscle cross-sectional area and muscle thickness using magnetic resonance imaging in patients with knee osteoarthritis [J]. J Orthop Surg (Hong Kong), 2017, 25(3):2309499017743101.
[23] Yamauchi K, Suzuki S, Kato C, et al. Atrophy of individual thigh muscles measured by MRI in older adults with knee osteoarthritis: A cross-sectional study [J]. Ann Phys Rehabil Med, 2020, 63(1):38-45.
doi: S1877-0657(19)30110-1 pmid: 31386911
[24] 师东良, 王宁华, 谢斌. 膝骨关节炎患者与正常人股内侧肌、股直肌和股外侧肌收缩特征的对照研究 [J]. 中国康复理论与实践, 2009, 15(6):508-513.
[25] Macleod TD, Snyder-Mackler L, Buchanan TS. Differences in neuromuscular control and quadriceps morphology between potential copers and noncopers following anterior cruciate ligament injury [J]. J Orthop Sports Phys Ther, 2014, 44(2):76-84.
doi: 10.2519/jospt.2014.4876 pmid: 24261930
[26] Henninger HB, Christensen GV, Taylor CE, et al. The muscle cross-sectional area on MRI of the shoulder can predict muscle volume: An MRI study in Cadavers [J]. Clin Orthop Relat Res, 2020, 478(4):871-883.
doi: 10.1097/CORR.0000000000001044
[27] Tomlinson OW, Barker AR, Fulford J, et al. Quantification of thigh muscle volume in children and adolescents using magnetic resonance imaging [J]. Eur J Sport Sci, 2020, 20(9):1215-1224.
doi: 10.1080/17461391.2019.1707292
[28] Nakatani M, Takai Y, Akagi R, et al. Validity of muscle thickness-based prediction equation for quadriceps femoris volume in middle-aged and older men and women [J]. Eur J Appl Physiol, 2016, 116(11/12):2125-2133.
doi: 10.1007/s00421-016-3464-1
[1] 邢念增,王明帅,杨飞亚,尹路,韩苏军. 前列腺免活检创新理念的临床实践及其应用前景[J]. 北京大学学报(医学版), 2024, 56(4): 565-566.
[2] 田宇轩,阮明健,刘毅,李德润,吴静云,沈棋,范宇,金杰. 双参数MRI改良PI-RADS评分4分和5分病灶的最大径对临床有意义前列腺癌的预测效果[J]. 北京大学学报(医学版), 2024, 56(4): 567-574.
[3] 魏越,姚兰,陆希,王军,蔺莉,刘鲲鹏. 胃超声检查评估剖宫产产妇术前饮用碳水化合物后胃排空的效果[J]. 北京大学学报(医学版), 2023, 55(6): 1082-1087.
[4] 刘毅,袁昌巍,吴静云,沈棋,肖江喜,赵峥,王霄英,李学松,何志嵩,周利群. 靶向穿刺+6针系统穿刺对PI-RADS 5分患者的前列腺癌诊断效能[J]. 北京大学学报(医学版), 2023, 55(5): 812-817.
[5] 袁昌巍,李德润,李志华,刘毅,山刚志,李学松,周利群. 多参数磁共振成像中动态对比增强状态在诊断PI-RADS 4分前列腺癌中的应用[J]. 北京大学学报(医学版), 2023, 55(5): 838-842.
[6] 刘颖,霍然,徐慧敏,王筝,王涛,袁慧书. 磁共振血管壁成像评估颈动脉中重度狭窄患者斑块特征与脑血流灌注的相关性[J]. 北京大学学报(医学版), 2023, 55(4): 646-651.
[7] 傅强,高冠英,徐雁,林卓华,孙由静,崔立刚. 无症状髋关节前上盂唇撕裂超声与磁共振检查的对比研究[J]. 北京大学学报(医学版), 2023, 55(4): 665-669.
[8] 叶珊,金萍萍,张楠,邬海博,石林,赵强,杨坤,袁慧书,樊东升. 肌萎缩侧索硬化患者认知功能改变与脑皮层厚度分析[J]. 北京大学学报(医学版), 2022, 54(6): 1158-1162.
[9] 蔡颖,万巧琴,蔡宪杰,高亚娟,韩鸿宾. 光生物调节加速脑组织间液引流及其机制[J]. 北京大学学报(医学版), 2022, 54(5): 1000-1005.
[10] 王书磊,高阳旭,张宏武,杨海波,李辉,李宇,沈笠雪,姚红新. 儿童基底节区生殖细胞瘤30例临床分析[J]. 北京大学学报(医学版), 2022, 54(2): 222-226.
[11] 张帆,陈曲,郝一昌,颜野,刘承,黄毅,马潞林. 术前及术后膜性尿道长度与腹腔镜根治性前列腺切除术后控尿功能恢复的相关性[J]. 北京大学学报(医学版), 2022, 54(2): 299-303.
[12] 梁炜,汤瑶,黄文斌,韩冰,林久祥. 上磨牙颊侧微种植体支抗在安氏Ⅱ类正畸减数拔牙患者垂直向控制中的作用[J]. 北京大学学报(医学版), 2022, 54(2): 340-345.
[13] 吴为良,曾筱,刘晓强,谭建国. 120例中国成年人上前牙美学比例分析[J]. 北京大学学报(医学版), 2020, 52(6): 1130-1134.
[14] 郝柯屹,罗佳,邸萍,郭厚佐,沈惠丹,刘焱萍,张宇,林野. 三维图像融合技术评价上颌全牙列种植固定修复前后的鼻唇软组织形态变化[J]. 北京大学学报(医学版), 2020, 52(5): 924-930.
[15] 盛荟,梁磊,周童亮,贾彦兴,王彤,袁兰,韩鸿宾. 光磁双模态探针钆-[4,7-双-羧甲基-10-(2-荧光素硫脲乙基)-1,4,7,10-四氮杂环十二烷-1-基]-乙酸络合物合成方法的改进[J]. 北京大学学报(医学版), 2020, 52(5): 959-963.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!