北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (1): 134-139. doi: 10.19723/j.issn.1671-167X.2022.01.021

• 论著 • 上一篇    下一篇

深度学习算法辅助构建三维颜面正中矢状平面

朱玉佳1,2,许晴3,赵一姣1,2,张磊1,2,付子旺3,温奥楠1,2,高梓翔1,2,张昀4,傅湘玲3,(),王勇1,2,()   

  1. 1.北京大学口腔医学院·口腔医院口腔医学数字化研究中心,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔数字化医疗技术和材料国家工程实验室,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081
    2.北京大学口腔医学院·口腔医院口腔修复科,北京 100081
    3.北京邮电大学计算机学院(国家示范性软件学院),北京 100876
    4.兰州市口腔医院特诊科,兰州 730000
  • 收稿日期:2021-10-10 出版日期:2022-02-18 发布日期:2022-02-21
  • 通讯作者: 傅湘玲,王勇 E-mail:fuxiangling@bupt.edu.cn;kqcadc@bjmu.edu.cn
  • 基金资助:
    国家自然科学基金(81870815);国家自然科学基金(82071171);甘肃省重点研发计划项目(21YF5FA165)

Deep learning-assisted construction of three-demensional facial midsagittal plane

ZHU Yu-jia1,2,XU Qing3,ZHAO Yi-jiao1,2,ZHANG Lei1,2,FU Zi-wang3,WEN Ao-nan1,2,GAO Zi-xiang1,2,ZHANG Jun4,FU Xiang-ling3,(),WANG Yong1,2,()   

  1. 1. Center of Digital Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
    2. Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
    3. School of Computer Science, Beijing University of Posts and Telecommunications(National Pilot Software Engineering School), Beijing 100876, China
    4. Department of Geriatric Dentistry, Lanzhou Stomatological Hospital, Lanzhou 730000, China
  • Received:2021-10-10 Online:2022-02-18 Published:2022-02-21
  • Contact: Xiang-ling FU,Yong WANG E-mail:fuxiangling@bupt.edu.cn;kqcadc@bjmu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(81870815);National Natural Science Foundation of China(82071171);National Key Research and Development Program of Gansu Province(21YF5FA165)

RICH HTML

  

摘要:

目的: 旨在建立一种可准确确定三维颜面解剖标志点的深度学习算法——多视图堆叠沙漏神经网络(multi-view stacked hourglass convolutional neural networks,MSH-CNN), 并结合赋权普氏分析算法实现三维颜面正中矢状平面的自动构建。方法: 收集面部无明显畸形的受试者100例,获取三维颜面数据,由专家进行颜面标志点(21个)和正中矢状平面的标注。以上述其中80例受试者三维颜面数据作为训练集数据,训练并建立本研究的MSH-CNN算法模型。以其余20例作为测试集数据,由训练后的深度学习算法自动确定每例数据的三维颜面解剖标志点(21个), 并评价算法标点与专家标点间“定点误差”。将MSH-CNN自动确定的三维颜面解剖标志点应用于本课题组前期研究建立的赋权普氏分析算法,可自动构建出20例受试者的三维颜面正中矢状平面。计算MSH-CNN结合赋权普氏分析算法构建的正中矢状平面与专家正中矢状平面间“角度误差”,评价三维颜面正中矢状平面自动构建方法的效果。结果: 针对20例面部无明显畸形的受试者,基于MSH-CNN和赋权普氏分析算法构建正中矢状平面与专家平面间的角度误差平均为0.73°±0.50°,其中MSH-CNN自动确定颜面21个解剖标志点的定点误差平均为(1.13±0.24) mm,眶区定点误差最大平均为(1.31±0.54) mm,鼻区定点误差最小平均为(0.79±0.36) mm。结论: 将深度学习算法与赋权普氏分析算法结合应用,实现了三维颜面正中矢状平面的全自动构建,初步达到了临床专家的构建效果,为自主知识产权的软件开发奠定了基础。

关键词: 正中矢状平面, 深度学习, 普氏分析

Abstract:

Objective: To establish a deep learning algorithm that can accurately determine three-dimensional facial anatomical landmarks, multi-view stacked hourglass convolutional neural networks (MSH-CNN) and to construct three-dimensional facial midsagittal plane automatically based on MSH-CNN and weighted Procrustes analysis algorithm. Methods: One hundred subjects with no obvious facial deformity were collected in our oral clinic. Three-dimensional facial data were scanned by three-dimensional facial scanner. Experts annotated twenty-one facial landmarks and midsagittal plane of each data. Eighty three-dimensional facial data were used as training set, to train the MSH-CNN in this study. The overview of MSH-CNN network architecture contained multi-view rendering and training the MSH-CNN network. The three-dimensional facial data were rendered from ninety-six views that were fed to MSH-CNN and the output was one heatmap per landmark. The result of the twenty-one landmarks was accurately placed on the three-dimensional facial data after a three-dimensional view ray voting process. The remaining twenty three-dimensional facial data were used as test set. The trained MSH-CNN automatically determined twenty-one three-dimensional facial anatomical landmarks of each case of data, and calculated the distance between each MSH-CNN landmark and the expert landmark, which was defined as position error. The midsagittal plane of the twenty subjects’ could be automatically constructed, using the MSH-CNN and Procrustes analysis algorithm. To evaluate the effect of midsagittal plane by automatic method, the angle between the midsagittal plane constructed by the automatic method and the expert annotated plane was calculated, which was defined as angle error. Results: For twenty subjects with no obvious facial deformity, the average angle error of the midsagittal plane constructed by MSH-CNN and weighted Procrustes analysis algorithm was 0.73°±0.50°, in which the average position error of the twenty-one facial landmarks automatically determined by MSH-CNN was (1.13±0.24) mm, the maximum position error of the orbital area was (1.31±0.54) mm, and the minimum position error of the nasal area was (0.79±0.36) mm. Conclusion: This research combines deep learning algorithms and Procrustes analysis algorithms to realize the fully automated construction of the three-dimensional midsagittal plane, which initially achieves the construction effect of clinical experts. The obtained results constituted the basis for the independent intellectual property software development.

Key words: Midsagittal plane, Deep learning, Procrustes analysis

中图分类号: 

  • R783.2

图1

三维颜面标志点示意图"

图2

多视图堆叠沙漏神经网络模型架构图"

图3

多视图堆叠沙漏神经网络算法自动确定三维颜面解剖标志点的效果图"

图4

多视图堆叠沙漏神经网络算法自动构建的三维颜面正中矢状平面效果图"

[1] O’Grady K, Antonyshyn O. Facial asymmetry: three-dimensional analysis using laser surface scanning[J]. Plast Reconstr Surg, 1999, 104(4):928-937.
doi: 10.1097/00006534-199909020-00006
[2] Silva BP, Mahn E, Stanley K, et al. The facial flow concept: an organic orofacial analysis-the vertical component[J]. J Prosthet Dent, 2019, 121(2):189-194.
doi: 10.1016/j.prosdent.2018.03.023
[3] Staderini E, Patini R, Camodeca A, et al. Three-dimensional assessment of morphological changes following nasoalveolar molding therapy in cleft lip and palate patients: a case report[J]. Dent J, 2019, 7(1):27-33.
doi: 10.3390/dj7010027
[4] 郭宏铭, 白玉兴, 周立新, 等. 北京地区正常牙合面部软组织不对称性的三维测量研究[J]. 北京口腔医学, 2006, 14(1):50-52.
[5] Hartmann J, Meyer-Marcotty P, Benz M, et al. Reliability of a method for computing facial symmetry plane and degree of asymmetry based on 3D-data[J]. J Orofac Orthop, 2007, 68(6):477-490.
pmid: 18034288
[6] Klingenberg CP, Barluenga M, Meyer A. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry[J]. Evolution, 2002, 56(10):1909-1920.
pmid: 12449478
[7] 熊玉雪, 杨慧芳, 赵一姣, 等. 两种评价面部三维表面数据不对称度方法的比较[J]. 北京大学学报(医学版), 2015, 47(2):340-343.
[8] Zhu YJ, Zheng SW, Yang GS, et al. A novel method for 3D face symmetry reference plane based on weighted Procrustes analysis algorithm[J]. Bmc Oral Health, 2020, 20(1):1-11.
doi: 10.1186/s12903-019-0991-2
[9] 朱玉佳, 赵一姣, 郑盛文, 等. 基于赋权形态学分析的三维面部对称参考平面构建方法[J]. 北京大学学报(医学版), 2020, 53(1):220-226.
[10] de Mom E, Chapuis J, Pappas I, et al. Automatic extraction of the mid-facial plane for cranio-maxillofacial surgery planning[J]. Int J Oral Max Surg, 2006, 35(7):636-642.
doi: 10.1016/j.ijom.2006.01.028
[11] Benz M, Laboureux X, Maier T, et al. The symmetry of faces[C]. Germany: Aka GmbH, 2002.
[12] 田凯月. 下颌前突偏斜畸形数字化矫治方案设计[D]. 北京:北京大学医学部, 2015.
[13] Xiong YX, Zhao YJ, Yang HF, et al. Comparison between interactive closest point and procrustes analysis for determining the median sagittal plane of three-dimensional facial data[J]. J Craniofac Surg, 2016, 27(2):441-444.
doi: 10.1097/SCS.0000000000002376
[14] Zelditch, Leah M. Geometric morphometrics for biologists: a primer [M]. New York and London: Elsevier Academic Press, 2004: 293-319.
[15] Katina S, Mcneil K, Ayoub A, et al. The definitions of three-dimensional landmarks on the human face: an interdisciplinary view[J]. J Anat, 2016, 228(3):355-365.
doi: 10.1111/joa.2016.228.issue-3
[16] Agbolade O, Nazri A, Yaakob R, et al. Homologous multi-points warping: an algorithm for automatic 3D facial landmark[C]. China: Institute of Electrical and Electronics Engineers, 2019.
[17] Creusot C, Pears N, Austin J. A machine-learning approach to keypoint detection and landmarking on 3D meshes[J]. Int J Comput Vision, 2013, 102(1/2/3):146-179.
doi: 10.1007/s11263-012-0605-9
[18] Su H, Maji S, Kalogerakis E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]. Chile: Institute of Electrical and Electronics Engineers, 2015.
[19] Paulsen RR, Juhl KA, Haspang TM, et al. Multi-view consensus CNN for 3D facial landmark placement[C]. Australia: Springer, 2018.
[20] Ding ML, Fan Y, Qin M, et al. Facial morphological changes following denture treatment in children with hypohidrotic ectodermal dysplasia[J]. Pediatr Dent, 2020, 42(4):315-320.
[21] 萧宁, 王勇, 赵一姣. 三维颜面部软组织正中矢状面确定方法的研究进展[J]. 中华口腔医学杂志, 2018, 53(7):495-499.
[22] Erten O, Yilmaz BN. Three-dimensional imaging in orthodontics[J]. Turk J Orthod, 2018, 31(3):86-94.
doi: 10.5152/TurkJOrthod.
[23] 王斯维, 杨慧芳, 赵一姣, 等. 3种生成大视野锥形束CT数据正中矢状面方法的比较[J]. 北京大学学报(医学版), 2016, 48(2):330-335.
[1] 许克新,丁泽华. 人工智能在功能泌尿外科的应用[J]. 北京大学学报(医学版), 2023, 55(5): 771-774.
[2] 朱玉佳,赵一姣,郑盛文,温奥楠,傅湘玲,王勇. 基于赋权形态学分析的三维面部对称参考平面构建方法[J]. 北京大学学报(医学版), 2021, 53(1): 220-226.
[3] 熊玉雪, 杨慧芳, 赵一姣, 王勇. 两种评价面部三维表面数据不对称度方法的比较[J]. 北京大学学报(医学版), 2015, 47(2): 340-343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 钟金晟, 欧阳翔英, 梅芳, 邓旭亮, 曹采方. 多孔β-磷酸三钙/胶原支架与犬牙周膜细胞三维复合体的构建[J]. 北京大学学报(医学版), 2007, 39(5): 507 -510 .
[2] 张奇, 罗国安, 邓英杰. 均匀设计法制备5-氟尿嘧啶脂质体及其稳定性[J]. 北京大学学报(医学版), 2002, 34(1): 64 -67 .
[3] 管宏, 赵慧云, 沈磊, 李五岭, 王建华, 王春荣, 徐福. 联合应用重组TPO和G-CSF对骨髓抑制性小鼠外周血小板及白细胞恢复的影响[J]. 北京大学学报(医学版), 2001, 33(2): 181 -182 .
[4] 李云芳, 张幼怡, 侯嵘, 董尔丹, 韩启德. 质粒转染对HEK293和DDT1-MF2细胞天然β2-肾上腺素受体表达的影响[J]. 北京大学学报(医学版), 2001, 33(5): 457 -461 .
[5] 柯杨. 乳头状瘤病毒与人类肿瘤[J]. 北京大学学报(医学版), 2002, 34(5): 599 -603 .
[6] 赵建新, 周良, 万远廉. 经十二指肠逆行放置支架治疗恶性幽门梗阻2例[J]. 北京大学学报(医学版), 2002, 34(6): 737 -738 .
[7] 洪涛, 霍勇. COURAGE试验后稳定型心绞痛的治疗策略思考[J]. 北京大学学报(医学版), 2007, 39(6): 562 -564 .
[8] 牟向东, 王广发, 阙呈立, 李桂莲. H3N2型人流行性感冒合并金黄色葡萄球菌败血症及金黄色葡萄球菌肺炎1例[J]. 北京大学学报(医学版), 2007, 39(6): 663 -665 .
[9] 李智岗, 黄景香, 李顺宗, 赵俊京, 时高峰, 梁国庆, 王红光, 韩捧银, 王琦, 谷铁树. 肝转移瘤的血供[J]. 北京大学学报(医学版), 2008, 40(2): 146 -150 .
[10] 冯现竹, 侯平, 朱厉, 于磊, 张宏. 转铁蛋白受体基因多态性与IgA肾病易感性及临床病理表型的相关性[J]. 北京大学学报(医学版), 2008, 40(4): 369 -373 .